
随机热力学-2：Stochastic Process in Continuous
State Space
#StochasticThermaldynamics

Evolution of Propagator
现在考虑连续状态空间，系统的状态以矢量 →X(t) 表示。我们这样定义一个连续路径：

lim
Δt→0

1

Δt
∫

|Δx|>ϵ

dx  p(x + Δx, t + Δt|x, t) = 0

而对于我们之前的离散路径，有：

w(x|x′, t) = lim
Δt→0

1

Δt
p(x, t + Δt|x′, t)

我们希望知道系统的一个可观测量随着时间的演化：

在第三步中我们使用了 CK 方程。

我们先考虑一个简单的情形，这里轨道不是连续的。所谓跳过程：

w(x′|x, t) = lim
Δt→0

1

Δt
p(x′, t + Δt|x, t)

那么：

∂tE[f] = ∫ dxf(x) ∫ dx′(w(x|x′, t)p(x′, t|⋅) − w(x′|x, t)p(x, t|⋅))

从中读出概率密度的演化：

∂tp(x, t|⋅) = ∫ dx′(w(x|x′, t)p(x′, t|⋅) − w(x′|x, t)p(x, t|⋅))

∂tE[f](t) = ∂t ∫ dxf(x)p(x, t|x0, t0)

= lim
Δt→0

1

Δt
∫ dxf(x)(p(x, t + Δt|⋅) − p(x, t|⋅))

= lim
δt→0

1

Δt
∫ dxf(x)(∫ dx′p(x, t + Δt|x′, t)p (x′, t|⋅)− ∫ dx′p(x′, t + Δt|x, t)p(x,



这个方程和主方程非常相似，你从所有 x′ 态获得概率，从 x 态损失概率。

再举一个例子，考虑一个过程：

Ai(x, t) =
1

Δt
∫ dx′(x′

i − xi)p(x′, t + Δt|x, t) :=
E(Δxi)

Δt

Bij(x, t) =
1

Δt
∫ dx′(x′

i − xi)(x′
j − xj)p(x′, t + Δt|x, t) =

E(ΔxiΔxj)

Δt

并假设这个过程的更高阶矩单位时间增量几乎为 0。我们仍然想看可观测量的期望随
时间的演化：

在这一步中，我们只是换了一下第一项里面 x 和 x′ 的名字。接下来对 f(x′) 在 x 处进
行 Taylor 展开，零阶项和后面抵消了，下面考虑后面的部分：

使用分部积分，使得 f 暴露出来，就得到：

∂tp(x, t|⋅) = −∂i(Aip(x, t|⋅)) +
1

2
∂i∂j(Bijp(x, t|⋅))

这是扩散过程中传播子的演化方程，称为 Fokker Planck 方程。

Brownian Motion and OU Process
下面举几个例子。首先考虑布朗运动。假设我们知道分布函数是：

p(x, t|⋅) =
1

√4πD(t − t0)
exp(−

(x − x0)2

4D(t − t0)
)

不难从中给出：

A = 0, B = 2D

∂tE[f] =
1

Δt
(∫ dx ∫ dx′f(x′)p(x′, t + Δt|x, t)p(x, t|⋅) − ∫ dx ∫ dx′f(x)p(x′, t + Δt|x, t)p(

∂tE[f] =
1

Δt
(∫ dx ∫ dx′f(x′)p(x′, t + Δt|x, t)p(x, t|⋅) − ∫ dx ∫ dx′f(x)p(x′, t + Δt|x, t)p(

=
1

Δt
∫ dxdx′((x′

i − xi)∂if|x + (x′
i − xi)(x′

j − xj)∂i∂jf|x + ⋯)p(x′, t + Δt|x, t)p(x,

= ∫ dx((∂if)Ai(x, t)p(x, t|⋅) +
1

2
(∂i∂jf)Bij(x, t)p(x, t|⋅))



更高阶的矩的增量是 0。此时 FP 方程退化到热方程。另一个例子是随机谐振子，记

U(x) =
1

2
kx2，在考虑系统的确定性演化时，我们将系统简化为过阻尼系统，所以

有：

−kx = (6πηR)ẋ

考虑以上确定性动力学叠加了布朗运动，扩散系数为 D，所以我们有 A = −γx,
B = 2D 。FP 方程是：

∂tp = ∂x(γx ⋅ p) + D∂ 2
xp

下面我们借助傅里叶变换求解它，定义：

ϕ(k, t) = ∫ dx exp(ikx)p(x, t|⋅)

对上面的 PDE 左右两侧进行 Fourier 变换得到：

∂tϕ(k, t) + γk∂kϕ(k, t) = −Dk2ϕ(k, t),  ϕ(k, t = 0) = exp(ikx0)

这样的方程可以使用所谓特征线法求解，也就是指定 k 的“流线” k(t)，这样，原本的
坐标 (k, t) 被换成新的坐标 (k0, t)。定义：

ϕ(t) := ϕ(k(t), t)

写出其全微分：

dϕ(t)

dt
=

∂ϕ

∂k

dk(t)

dt
+

∂ϕ

∂t

若我令 
dk

dt
= γk，那么我有：

dϕ

dt
= −Dk2ϕ,  

dk

dt
= γk

所以我们得到了：

k(t) = k0 exp(−γt),  ϕ(t) = ϕ(0) exp(−D ∫
t

0

dt′k2(t′)) = exp(ik0x0 −
D

2γ
k2

0(exp(2γt) − 1

把坐标变回去，有：

ϕ(t) = exp(ik exp(−γt)x0 −
1

2

D

γ
k2(1 − exp(−2γt)))



这是高斯分布的特征函数，均值是 E[x] = x0 exp(−γt)，方差是

Var[x0] =
D

γ
(1 − exp(−2γt))。在 t → ∞ 时系统应处于平衡态，此时有能均分定理：

1

2
kBT =

1

2
mE[x2]

也就是说在振动自由度上有 1

2
kBT  的能量。所以我们有：

D =
kBT

6πηR

这被称为 Einstein-Stokes 关系。

Inverse Problem & MCMC Sampling
下面我们考虑如何从数据中推断模型参数。一种常见的方式是 Bayes：

p(θ|D) =
1

p(D)
p(D|θ)p(θ)

所以假如我们想推断参数，我们要做的事情就是最大似然估计。我们现在可能希望求
解：

E[f(θ)] = ∫ dθ p(θ|D)f(θ) := ∫ dθ p(θ)f(θ)

上面这个东西由于高维积分而难以计算，所以我们一般做的是 Monte-Carlo 积分

∑
1

N
f(θi)。我们通常构建一个马氏链，让其稳态概率变成 p(θ)。如何设计这样的马

氏链呢？显然我们需要指定 p(θ′|θ)，以下算法可以做到：

选择任意 θ(0)

循环：
Propose 新的 θ(i)，根据 q(θ(i)|θ(i−1))

根据 A(θ(i)|θ(i−1)) = min(Λ, α) 接受新的 θ(i)。
我们要给出这里 q, α。这里我们希望通过 q 让系统探索整个状态空间，而在 α
中编码系统的后验概率：

α =
p(θ′)q(θ|θ′)

p(θ)q(θ′|θ)



Example: 2 State System, Chemotaxis

趋化性：指细胞根据环境中某些化学药物的浓度运动的现象。下面对这种现象进行建
模。我们考虑一个感知系统，有一种蛋白质能够把细菌的驱动马达的转向从顺时针转
向逆时针。简单起见，考虑 1 维运动，细菌能做两件事：要么转换它的移动方向，要

么移动。转换移动方向的时间尺度大约是 τtumble ∼
1

10
sec.，而移动的时间尺度大约是

τrun ∼ 1 sec。以 σ = ±1 表示细菌的移动方向；以 α+(x) 表示细胞在 x 处由 σ = +1

Λ 是可以调节的参数。你可以证明这里的链的稳态分布就是我们想要的 p(θ)

。上面这种方法可能生成出太多被 Reject 的数据点，所以有一种改进称为
Hamiltonian Monte Carlo，就是把每个态的后验概率和能量对应起来：

p(θ) =
1

Z
exp(−H(θ))

从而：

α = exp(−βΔH)

我们也许可以把这里的 H 和标准的理论力学中的 H 联系一下。考虑标准的
哈密顿量：

H(θ, v) = K(v) + E(θ)

其中 K(v) =
1

2
vT M −1v，根据我们刚才指定的，有 E(θ) = − log p(θ)。我们

可以根据这个哈密顿量从相空间中采样，那么：

p(θ, v) =
1

Z
exp(−K(v) − E(θ)) =

1

Z
N (v|0, M)p(θ)

首先，我们随机采样 v 使得 p(v) ∼ N (v|0, M)，而后根据哈密顿方程将系统
演化到 (θ′, v′)，而后再随机生成一个速度 v，再次演化一段时间，... ，不断重
复以上步骤。那么我们实际上需要求两处接受概率：一个是演化到一个位置
时，重新指定速度的接受概率；另一个是演化前->演化后的接受概率。重新
接受指定速度的概率是：

N (v′)

N (v)
⋅
N (v)

N (v′)
= 1

演化前->演化后的接受概率也是 1 .你可以认为这是哈密顿系统的能量守恒和
保相体积两个特性共同导致的。



变成 σ = −1 的概率，α−(x) 亦然。以 p±(x, t) 表示细菌向右/左移动的概率。演化方
程是：

考虑 p(x, t) = p+ + p− 和 J(x, t) = v0(p+ − p−)，这两个量之间的关系就是流守恒方
程：

∂tp(x, t) = −∂xJ(x, t)

再考虑：

你可以认为这里的第三项是 Drift，第二项是 Damping，第一项将会对应于 Diffusion
（后面我们会看到这一点）。由于扩散的驱动系数正比于 v2

0，你可以认为系统有

DEFF ∼
v2

0

α+ + α−
（驱动/阻尼）的扩散系数；扩散这一项达到平衡的时间大概是

τDIFF ∼
L2

DEFF

，L 是某个特征长度。我们观测到细菌每次单向行走的长度尺度大约

是 20μm，所以我们可以设置 L ∼ 100μm，利用以上数据马上算出 τDIFF ∼ 25s。也就

是说 p 的扩散过程非常慢，而 J 的变化特征时间 1

α+ + α−
 却非常快（v0 ≪ 1），所

以我们可以采用所谓绝热假设：

∂tJ ≈ 0

所以立刻解出：

J(x, t) ≈
1

α+ + α−
(−v2

0∂xp + v0p) := DEFF ∂xp + vEFF p

那么我们就得到 FP 方程了。

细菌的感知实际上是读取了其轨迹上的化学物质浓度。设这个浓度 c(x)，那么：

dc

dt
≈ ẋ∂xc = v0σ(t)∂xc

我们设置：

α±(x) = α0(1 ∓ χv0∂xc)

∂tp+(x, t) = −v0∂xp+(x, t) − α+p+(x, t) + α−(x)p−(x, t)
∂tp−(x, t) = +v0∂xp−(x, t) − α−p−(x, t) + α+(x)p+(x, t)

∂tJ = −v2
0∂xp − (α+ + α−)J + v0(α+ + α−)p



所以 DEFF ≈
v2

0

2α0
, vEFF ≈ χ

v0

2α0
∂xc。所以从这里我们会发现细菌沿着浓度梯度行

走。

有一个更复杂的情况是 c(x, t)，化学物质的浓度依赖于时间，并且：

∂tc = Dc∂
2
xc − kc + F(p)

也就是说这种化学物质由细菌自身产生。如果我允许 χ = χ(c)，这个模型称为 Keller-
Segel Model。我们写下这个模型：

∂tρ = −∇ ⋅ ((χ(c)∇c)ρ) + D∇2ρ, ∂tc = Dc∇
2c − kc + f[ρ]

这个模型没有精细平衡，甚至远离稳态，因为生物的感知机制需要外界注入能量。

现在考虑一个叫 Schnitzer Model 的东西。

∂tp+ = −∂x(v(x)p+) −
1

2
α(x)p+ +

1

2
α(x)p−

∂tp− = −∂x(v(x)p−) −
1

2
α(x)p− +

1

2
α(x)p+

定义 p = p+ + p−, J = v(x)[p+ − p−]，其实只是把上面的模型的 +/− 切换改成对称
的。使用绝热近似得到：

∂tp = ∂ (
v(x)

α(x)
∂x(v(x)p))

流量：

J = −
v2(x)

α(x)
∂xp(x) − p(x)

v(x)

α(x)
∂xv(x)

若 α(x) = α0，现在解出系统的稳态：

pss(x) ∝
1

v(x)

这很直观：密度聚集在速度更慢的地方。

考虑另一个模型，我们人为地制造这种拥挤效应：

∂tρ(x, t) = −∂xJ(x, t); J(x, t) = −v(ρ)∂x(ρv(ρ))

且 v(ρ) 随着 ρ 的增大而减小，那么：



J(x, t) = −(v2(ρ) + ρv(ρ)v′(ρ))∂xρ := −DEFF (ρ)∂xρ

有趣的事情是在 DEFF (ρ) < 0 的时候，会出现反向扩散，此时，粒子从浓度低的地方

运动到浓度高的地方。（此时 d

dρ
(ρv(ρ)) < 0））一个简单的例子是

v(ρ) = v0 (1 −
ρ

ρ⋆
)，则反向扩散在 ρ >

1

2
ρ⋆ 时出现。这种现象称为 Phase-

Seperation，因为系统会形成一些“团块”。

上面的模型可以被写成：

J(x, t) = −M(ρ)∂xμ(ρ), M(ρ) = ρv2, μeff = ln ρ + ln v(ρ)

但是 M(ρ), μeff(ρ) 可以取成其他的函数。这里的 μeff  可以被视为化学势。考虑自由
能：

Feff = ∫ dx [ρ ln ρ − ρ + ∫ ds ln v(s)]

它对密度的泛函导数应当被视为化学势（注意：这是对 μ =
∂F

∂N
|T ,V  的推广），不难

验证 
δFeff

δρ
= μeff。所以动力学方程写成：

∂tρ = ∂x [M(ρ)∂x

δFeff

δρ
]

这是一个 Wasserstein 梯度流方程，只要我们的系统的流量能写成这样的形式
J(x, t) = −M(ρ)∂xμeff(ρ)，那么系统的运动就是在最小化一个能量泛函。不难验证
dFeff

dt
< 0，所以稳态就是 Feff  最小的时候。我们说这是一个“有效”热力学问题，是

因为这个系统和标准热力学系统有相同的平衡条件（Feff  最小）。

Langevin Equation
无论对于离散还是连续系统，我们都应该有一个系综表述和一个单体表述。现在我们
给出对于连续状态空间的单体表述。考虑悬浮在液体中的粒子，它不断受到液体分子
的撞击。根据牛顿动力学方程：

m
d

dt
v(t) = −mζv(t)

其中 mζ = 6πηR。如果只有这部分，速度将指数衰减。但是这显然不对，根据能均分
定理我们必须有：



所以我们的动力学方程缺了一项：

m
d

dt
v(t) = −mζv(t) + η(t)

这里的 η(t) 是随机力，这个方程称为郎之万方程。有如下基本假设：

E[η(t)] = 0

这使得我们在取平均的时候可以恢复确定性动力学。以及：

E[ηi(t)ηj(t′)] = 2Γδijδ(t − t′)

这个力各向同性、在时间上短程相关。记 Λ =
1

√2Γ
η。那么郎之万方程的解应该是：

v(t) = v0 exp(−ζt) +
√2Γ

m
∫

t

0
exp(−ζ(t − τ))Λ(τ)dτ

（注：你可以认为我们使用积分因子法推出了这个式子，也就是先将原方程变形为
d

dt
(v(t) exp(−ζt)) =

1

m
exp(−ζt)η(t)），而后得到上式）

我们现在利用这个式子计算 v 的相关函数：

其中利用了 t, t′ ≫ ζ −1 的假设。所以我们可以看到，速度的关联随着时间指数下降。
与前面的能均分定理比较，可以给出

Γ = mζkBT = γkBT

介观粒子受到的摩擦和撞击都来自于流体分子，所以可想而知这二者不是独立的。这
个关系称为涨落耗散关系。现在我们考虑粒子位置的演化，我们先不讨论随机微积分
我们只计算统计量：

E(vi(t)vj(t′)) = v0iv0j exp(−ζ(t + t′)) +
2Γ

m2
∫ dτdτ ′

E(Λi(τ)Λj(τ ′)) exp(−ζ(t − τ)) exp(−ζ(

=
Γ

ζm2
exp(−ζ|t − t′|)δij + (v0iv0j −

Γ

ζm2
) exp(−ζ(t + t′))

≈
Γ

ζm2
exp(−ζ|t − t′|)δij



t ≫ ζ −1 时，基本上 E[x2] = 2♯Dt, D =
kBT

6πηR
，这个是我们做随机谐振子时得到的

Einstein-Stokes 关系；而在 t ≪ ξ−1 时，E[x2] =
♯kBT

m
t2。

Fokker Planck for Langevin Particles
现在我们假设 η(t) 是高斯分布的随机变量。考虑：

ΔW(t, Δt) := ∫
t+Δt

t

dτη(τ)

由于 η(t) 被假设为服从高斯，那么 ΔW  必然服从高斯。我们看看它的二阶矩：

所以前面的方程中，第一项是 Δt 的一阶小量，第二项则是“半阶小量”。这是一个非常
不寻常的东西！在之前的离散格式中，我们从未出现“半阶小量”。
所以，p(v′

i, t + Δt|vi, t) 的均值是 −ζv(t)Δt，方差是 2ζkBTΔt，据此很容易直接写出
其分布。
其中 σ = 2mζkBT。下面构建 Fokker Planck 方程：

E((Δx)2) = ∫
t

0
dτ ∫

t

0
dτ ′

E(v(τ)v(τ ′))

= 2♯Dim 
kBT

mζ
(t +

1

ζ
(exp(−ζt) − 1))

mΔv = m(v(t + Δt) − v(t))

= −mζv(t)Δt + ΔW(t, Δt)

E[ΔWkΔWj] = ∫
t+Δt

t

∫
t+Δt

t

dτdτ ′
E[ηk(τ)ηj(τ)]

= 2mζkBTδkjΔt

Ai =
E[Δvi]

Δt

=
1

Δt
∫ dv′Δvip(v′, t + Δt|v, t)

=
1

Δt
E[−ξviΔt +

1

m
ΔWi]|v,Δt

= −ζvi



那么立刻得到 FPE：

∂tp(v, t|⋅) = ∂v(ζvp(v, t|⋅)) +
kBTζ

m
∂ 2

v p(v, t|⋅)

容易得到它的稳态：

pss(v) =
1

Z
exp(−

1

2

mv2

kBT
)

现在让我们研究过阻尼的情形，此时考虑位置随着时间的演化：

m
d2x

dt2
+ ζm

dx

dt
= −∇u + η

假设粒子密度非常小，第一项可以忽略。我们把方程重新写成：

dx

dt
= −μ∇u + ξ

前面的扩散系数 D = μkBT，
dx

dt
= −μ∇u + √2DΛ。为了导出 x 的 FPE，我们需要计

算 Δx 的一阶、二阶矩：

那么得到：

∂tp(x, t|⋅) = −∇(μF(x)p(x, t|⋅)) + D∇2p(x, t|⋅)

长时间时，稳态分布是：

Bij =
1

Δt
E[ΔviΔvj]

=
1

Δt
∫ dv′ΔviΔvjp(v′, t + Δt|v, t)

=
1

Δt
E[ΔviΔvj]|v,Δt

=
2kBTζ

m
δij

Ai =
1

Δt
E[Δxi]

= μFi := −μ∂iu

Bi = 2Dδij



pss =
1

Z
exp(−

u(x)

kBT
)


