
随机热力学-1：Stochastic Process in Discrete State
Space
#StochasticThermaldynamics

Some Examples of Stochastic Process
Random Walks
为了研究远平衡系统的随机热力学，我们必须要懂得随机过程。所以我们先来考虑随
机过程中最简单的例子——随机游走。设有一粒子，每经过 τ 可以移动一次，每次跳
跃的长度 ξj = ±a，且取 +/− 的概率分别为 p, q = (1 − p)。在更一般的情形中，我们
允许 ξj 连续取值，其概率密度为 wj(ξ)。tk = kτ 时的粒子位置 xk 由如下递推方程给
出：

xk = xk−1 + ξk

所以有：

xk =
k

∑
j=1

ξj

简单起见，我们只考虑离散情形。描述 xk 的最简单的方式是研究它的各阶矩。显然：

E[xk] =∑E[ξj] = ka(p − q) := ka ⋅ μ

所以：

Var[xk] = k ⋅ (4a2pq) := k ⋅ σ2

均值和方差可以被重写为：

E[x2
k] =

k

∑
i=1

k

∑
j=1

E[ξiξj]

=
k

∑
i=1

k

∑
i≠j

E[ξi]E[ξj] +
k

∑
i=1

E[ξ2i ]

= k(k − 1)(a(p − q))2 + ka2(p + q)

= k(k − 1)(a(p − q))2 + ka2(p + q)2



E[xk] = vtk, Var[xk] = 2Dtk; v =
μ

τ
,D =

σ2

τ

所以，在这样简单的随机游走中，均值和方差都随着时间线性增长。
若我们想了解更多细节，我们可以直接计算分布函数 P(xk = na):

P(xk = na) = C
k+

k pk+(1 − p)k−

直接计算这个二项分布的均值和方差将得到和之前相同的结果。显然我们可以问，在
k ≫ 1 时上述分布的极限是什么，根据中心极限定理，显然以上分布将收敛到均值为
ka ⋅ μ，方差为 k ⋅ σ2 的高斯分布。

接下来我们考虑稍微变化的随机游走：Gaussian Random Walk。简便起见，我们取
τ = 1，设 ξt ∼ N (0,σ2

t )。现在再考虑 xt 的分布。立刻知道：

E[xt] = 0

E[x2
t ] =∑

t′

∑
t′′

E[ξt′ ]E[ξt′′ ] =∑
t′

E
2[ξt′ ] =∑

t′

σ2
t′

由于独立高斯分布的叠加是高斯分布，所以我们也可以方便地得到整体的分布。
我们定义 xt 的特征函数：

χ(xt) = E[exp(isxt)]

它是分布函数的傅里叶变换。对于高斯分布，我们有：

χ(ξt) = exp(−
1

2
s2σ2

t)

所以：

χ(xt) =∏
t′

E(exp(isξt′)) = exp(−
1

2
s2(∑

t′

σ2
t′))

所以我们知道 xt 的方差是 ∑t′ σ2
t′

Possion Process
泊松过程被用于描述一些“计数”现象。考虑有一计数随机过程 N(t)，单位时间内计数
增加 1 的概率为 ν，考察 dt 时间内，该过程计数增加 1 的概率是：

pt = νdt



显然，不动的概率是：

p0 = (1 − νdt)

我们现在希望计算下面几个问题：

首先我们考虑等待时间问题。使用 W(t) 记等待时间的累积分布，记 S(t) = 1 − W(t)

。考虑：

S(t + dt) = S(t)(1 − νdt) ⇒
dS(t)

dt
= −γS(t) ⇒ S(t) = exp(−νt)

所以等待时间的分布是指数分布，均值为 1
ν

= τ，方差为 1

ν 2
= τ 2。通过采样等待时

间，我们可以方便地对一个 Poisson 过程进行模拟。

Master Equation
我们现在给出描述离散状态系统的随机动力学的方程：主方程，并使用它描述上面的
Poisson 过程。不难发现：

d

dt
p(n, t) = νp(n − 1, t) − νp(n, t)

现在我们利用生成函数法求解它。定义：

G(s, t) =
∞

∑
n=0

p(n, t)sn

它类似于傅里叶变换，将 n 的函数变成 s 的函数。现在导出它满足的方程：

两步跳跃之间的等待时间的分布

P(N(t) = n) =?

首次到达某一位置的时间



注：我们可以发现 d

dt
 起到了湮灭算符的作用。

初始条件是 G(s, 0) = 1，所以：

G(s, t) = exp(νt(s − 1))

要还原概率，只需要 Taylor 展开，立刻得到：

p(n, t) = exp(−νt)
(νt)n

n!

E[N(t)] = νt, Var[X(t)] = νt，同样都是随时间线性增长。

显然，主方程的一般结构是：

d

dt
p(t) = Wp(t)

但是这里的 W  不一定是厄米的。

Population Dynamics
现在我们希望研究多个种群的数量变化。我们考虑最简单的情况：我们有一个种群，
它以 λ 的恒定速率死亡，系统的主方程是：

d

dt
p(n, t) = (n + 1)λp(n + 1, t) − nλp(n, t)

我们当然可以通过生成函数法求解上述方程，但是我们可以考虑一个个体：每个个体
在时间 t 时的生存概率是 p(t) = exp(−λt)，记 q(t) = 1 − p(t)，那么：

dG(s, t)

dt
=

∞

∑
n=0

d

dt
p(n, t)sn

=
∞

∑
n=0

(νp(n − 1, t) − νp(n, t))sn

=
∞

∑
~n=−1

νp(~n, t)s
~n+1 −

∞

∑
n=0

νp(n, t)sn

=
∞

∑
n=−1

νp(n, t)sn+1 −
∞

∑
n=0

νp(n, t)sn

= ν(s − 1)
∞

∑
n=0

snp(n, t)

= ν(s − 1)G(s, t)



p(n, t) = C n
n0

⋅ pn(t)qn0−n(t)

所以：

E[n(t)] = n0 exp(−λt), Var[n(t)] = n0 exp(−λt)(1 − exp(−λt))

设 S(t, t0) 为从 t0 时刻开始， t 时刻不发生任何衰变的概率，则显然有：

S(t + dt, t0) = S(t, t0)(1 − n(t0)λdt)

所以不难看出 S(t, t0) 服从参数为 n(t0)λ 的指数分布。我们可以利用这一事实进行模
拟。

考虑所谓 Lotka-Volterra 模型。考虑捕食者 A，猎物 B。设 A 的死亡率为 λ；B 的出
生率为 μ；捕食者吃掉猎物后会繁殖，捕食速率为 γp（捕食过程类似于
A + B → A + A）；猎物自身会因为数量太多而死亡，死亡速率 γc（死亡过程类似于
B + B → B）。令：

α1(t0) = N 0
Aλ,α2(t0) = N 0

Bρ,α3(t0) = N 0
AN 0

Bγp,α4(t0) = (N 0
B)(N

0
B − 1)γc

利用上面的这四个速率，我们可以给出主方程、对应的模拟算法。可以求出在一段时
间内什么都不发生的概率服从参数为 ∑αi 的指数分布。而当有事件发生时，发生第 i
个事件的概率是 Pμ(t0) =

αμ

∑μ αμ

。如果我们给出 A,B 的均值随时间的演化，你会发

现由 γc 引起的 B 的数量变化正比于 B 的数量的平方，这就是基元反应的质量作用定
律。特别地，γc = 0 时， 该系统中有一个运动积分：

E = μ ln a + λ ln b − γ(a + b)

这意味着系统在状态空间中的轨迹是闭合的。

Fundamental Equations for Markov Processes
CK Equation
记 →X(t) = (X1(t),X2(t),⋯)，简单起见我们考虑一维情况 X(t)，考虑：

P(xn, tn;xn−1, tn−1;⋯ ,x1, t1)dxndxn−1dx1

和：

P(xn+m, tn+m;⋯ ;xn+1, tn+1|xn, tn;⋯ ;x1, t1) =
P(⋅)

P(⋅)



我们下面要考虑的过程都具有所谓马氏性质：

P(xn, tn|xn−1, tn−1;⋯ ;x1, t1) = P(xn, tn|xn−1, tn−1)

那么：

P(xn, tn;⋯ ;x1, t1) = P(n|n − 1)⋯P(2|1)P(1)

考虑：

P(3, 1) = ∫ dx2P(3, 2, 1)

两边同时边缘概率：

P(x3, t3|x1, t1) = ∫ dx2P(x3, t3|x2, t2)P(x2, t2|x1, t1)

这样的方程就是 CK 方程。更一般的情况下，我们有：

P(n, t|n0, t0) =∑
n′

P(n, t|n′, t′)P(n′, t′|n0, t0)

我们推导如下方程：

这就是前向的主方程。写成矩阵形式有：

∂t
→P(τ|t0) = Qτ

→P(τ|t0)

其中：

Qτ,dτ(n,m) =
1

dτ
(P(n, τ + dτ|m, τ) − δn,m),Qτ = lim

τ→0
Qτ,dτ

我们将 Qτ  称作转移速率矩阵。在 n ≠ m 时，我们记 Wτ(n,m) = Qτ(n,m)，它是单
位时间内从 m 态转移到 n 态的概率；在 n = m 时，记 Wτ(m) = −Qτ(m,m)，它是单
位时间内从 m 态跳出的概率。我们显然有：∑n Qτ(n,m) = 0。当然，这里的 Q 并不
是厄米的。对于 n ≠ m,Qnm ≥ 0，否则 Qnm ≤ 0。

∂τP(n, τ|n0, t0) = lim
dτ→0

1

dτ
(P(n, τ + dτ|n0, t0) − P(n, τ|n0, t0))

= lim
dτ→0

∑
m

1

dτ
(P(n, τ + dτ|m, τ)P(m, τ|⋅) − δnmP(m, τ|⋅))

=∑
m

Qτ(n,m)P(m, τ|⋅)



显然，我们希望像求解 i ∂

∂t
|ψ⟩ = Ĥ|ψ⟩ 一样，把 →P  做本征分解，但是这里 →P  会有复

数本征值。上面的前向主方程也可以用跳跃速率 W  重写，我们会有：

我们就有在前面的 Master Equation 中看到的"Gain-Loss"形式的方程。

给出一个例子：单个粒子以 λ 速度消亡，以 μ 速度增长。所以我们有转移矩阵：

（从写法上来说，这里的矩阵可能和某些教材上不太相同，这里的某个元素代表从其
列索引代表的状态向行索引代表的状态转移的速率。）

Steady State of the System
下面，一个自然的问题当然是关注系统的稳态。由于一个矩阵的转置与其本身有相同
的特征值，所以 →1Q = 0 意味着我们可以找到 →ϕ，使得 Q→ϕ = 0 ，这意味着稳态一定存
在。我们把概率流有进无出的态称为吸收态；将概率终将衰减到 0 的态称为瞬态。一
个马氏链可以用一张有向图表示，图中的连通分量对应了 Q 的不变子空间。所以对于
一个大的系统，我们总可以根据其不变子空间将其拆成更小的系统，故下面考虑不可
以再拆的（不可约的）矩阵 Q，下面我们证明其稳态是唯一的。这个证明需要用到 P-
F 定理：若我们有非负元素的矩阵 M，则 M 有一正、实本征值称为 Perron 根 λ，其
余所有本征值全部满足 |μ| ≤ λ；特别地，若 M 不可约，则 λ 非简并，且 |μ| < λ 严
格成立。

现在我们有转移速率矩阵 Q，定义：

Mnm := Qnm + αδnm,  α = max
n

|Qnn|

根据 PF 定理，我们有：

∑
m

QnmP λ
m = (λ − α)P λ

n

这里的 λ 是 M 的最大本征值。两侧再对 n 求和：

∂τP(n, τ|⋅) =∑
m

(Wτ(n,m)P(m, τ|⋅) − Wτ(n)P(n, τ|⋅))

=∑
m

(Wτ(n,m)P(m, τ|⋅) − Wτ(m,n)P(n, τ|⋅))

⎡⎢⎣ 0 λ

0 −λ − μ

0 μ

⋯ ⋯

⎤⎥⎦



∑
n

∑
m

QnmP λ
m =∑

m

P λ
m∑

n

Qnm = 0 ⇒∑
n

(λ − α)P λ
n = 0 → (λ − α) = 0

所以我们有唯一的稳态，其对应的本征值为 α，其相应的 M 的本征矢量记为 π，这个
π 也就是速率矩阵 Q 对应的稳态分布。

对于随机过程 Xt，若 Xt 和 Xt+τ , ∀τ 有相同的统计量，我们称 Xt 是平稳的；若轨迹
(X(t1),X(t2),⋯X(tN)) 出现的概率与 (X(τ − t1),X(τ − t2),⋯X(τ − tN)) 出现的概
率相等（∀τ, t1,⋯ , tN），则称 Xt 是可逆的。下面说明，离散状态空间的马氏链的可
逆性和精细平衡条件：

πjωjk = πkωkj,  πi > 0

可以互相推出。对于满足这两个条件的马氏链，其图表示中是没有“环量”的。证明：
首先若马氏链可逆，则它必平稳，那么我们有 i 态上的不随时间改变的概率（稳态概
率）πi。根据可逆性质：

P(Xt = nj,Xt+τ = nk) = P(Xt = nk,Xt+τ = nj)

写成条件概率的形式：

P(Xt+τ = nk|Xt = nj)πj = P(Xt+τ = nj|Xt = nk)πk

这是精细平衡条件。另外一个方向：考虑 Q 有平稳分布 πi，我们从最初的状态开始，
一条轨迹的概率是：

π1 exp(−α1τ1)w12 exp(−α2τ2)w23 ⋯wn−1,n exp(−αnτn)

这是前向轨迹的概率。利用精细平衡条件，这个概率等于：

exp(−α1τ1)w21 exp(−α2τ2)w32 ⋯wn,n−1 exp(−αnτn)πn

而这正是后向轨迹的概率。所以利用精细平衡条件可以得到“前向轨迹概率” = “后向轨
迹概率”这个事实，从而推出可逆。

作为一个例子，我们考虑这样的过程：从 n 态到 n − 1 态的速率是 λn；从 n 态到
n + 1 态的速率是 μn，其中 μ0 = 0。这样的系统有一个吸收态 0，稳态概率 π0 = 1。
再考虑一维随机游走，它显然没有稳态概率。
再考虑环上的系统，这样的系统也不一定有稳态，因为可以在环上有流量。

Detailed Balance
下面考虑有精细平衡的系统，其速率矩阵为 Qmn，定义：



~
Qmn = π

− 1
2

m Qmnπ
1
2
n

它的非对角元素：

~
Qmn = π

− 1
2

m wmnπ
1
2
n = π

− 1
2

m wmnπnπ
− 1

2
n = π

− 1
2

m wnmπmπ
− 1

2
n =

~
Qnm

所以我们引入的 ~Q 是对角的。我们有如下特征方程：

~
Q
~
ϕ(λ) = −λ

~
ϕ(λ)

可以对角化 ~Q：

Λ =
~
S−1 ~Q

~
S

那么我们也可以找到线性变换来对角化 Q，只不过这个变换不一定是正交的（S 是正
交变换）：

对于 Q 我们也有本征方程：

Qϕ = −λϕ

由于 ~Q,Q 被对角化到同一个矩阵，因此它们有相同的本征值和不同的本征矢量，这意
味着两个 λ 相同，但是：

ϕm = π
1
2
m
~
ϕm

所以我们立刻就有系统的演化：

p(t) =∑
λ

cλϕ(λ) exp(−λt)

所以在有精细平衡的情况下，系统是不振荡地走向稳态的。注意：根据 P-F 定理，这
里的 λ ≥ 0。

下面介绍 Kolmogorov 环路准则：对于一个有限离散状态空间的不可约的可逆的马氏
过程，考虑环 1⋯N  上的动力学，有：

w1,2 ⋯wN−1,N wN ,1 = w1,N wN ,N−1 ⋯w2,1

我们暂时不给出这个证明。

Entropy Production

Λnm =∑
k,l

~
S−1

nk
π
− 1

2

k
Qklπ

1
2

l

~
Slm



考虑有稳态分布（不一定是精细平衡）的系统，从 t0 = 0 开始，在 tn+1 = T  终止，在
t1,⋯ tn 时跳到新的状态，在每个状态的持续时间为 τ0, τ1,⋯ , τn。我们以 γ 代表前向
轨迹，这条轨迹的概率是：

P[γ] = π0 exp(−α0τ0)w0,1 ⋯wn−1.n exp(−αnτn)

以 γ̄ 记反向轨迹，那么：

P[γ̄] = πn exp(−αnτn)wn,n−1 ⋯w1,0 exp(−α0τ0)

考虑概率之比：

P[γ]

P[γ̄]
=

π0

πn

⋅
w0,1 ⋯wn−1,n

wn,n−1 ⋯,w1,0

这个比值是系统的不可逆程度的度量，我们可以从这里定义出系统的熵产生：

Δs[γ] = ln
P[γ]

P[γ̄]
= ln

π0

πn

+
n

∑
k=1

ln
wk,k−1

wk−1,k

我们将第一项称为系统的熵产生，第二项称为环境熵产生。为什么这样命名？可以通
过研究系统和热库的交互来知道。下面考虑平均熵产率：

而：

Δsenv[γ] =∑
ij

Nij(T ) ln
wij

wji

Nij(T ) ∼ πjwijT  ，所以：

σ =∑
ij

πjwij ln
wij

wji

=∑
ij

πjwij ln
πjwij

πiwji

=∑
ij

(πjwij − πiwji) ln
πjwij

πiwji

下面我们说说这两个等价表示是怎么给出的。重要的一步是，利用平衡条件：

∑
j

(πjωij − πiωji) = 0

可以证明：

σ = lim
T→∞

1

T
E[Δs[γ]]

=
1

T
E[Δsenv[γ]]



∑
ij

πjwij ln
πi

πj

= 0

我们可以记从 j 到 i 的净流量 Jij = πjwij − πiwji。还可以证明这里的 σ ≥ 0，这与标
准热力学中的熵增对应。

Ehrenfest Model

下面我们举一个例子。考虑 N  个粒子在两个盒子中，以盒子 A 中的粒子数目
0, 1,⋯ ,N − 1,N  代表系统状态。单个粒子的转移速率是 λ，这意味着：

ωn−1,n = λ ⋅ n,ωn+1,n = λ(N − n)

这个系统只在一条线上运行，在平衡态时必然没有运行的概率流，所以必须有精细平
衡。根据精细平衡条件：

πn ⋅ λn = πn−1λ(N − (n − 1))

容易递推得到：

πn =
1

2N
C n

N ,μ =
N

2
,σ =

1

2
√N

显然，精细平衡和可逆是等价的，因此系统是可逆的。所以我们有：

1 =

P( N

2
, t + τ;N , t)

P(N , t + τ;
N

2
, t)

=

P( N

2
, t + τ|N , t) ⋅ πN

P(N , t + τ|
N

2
, t) ⋅ π N

2

这意味着：

P( N

2
, t + τ|N , t)

P(N , t + τ|
N

2
, t)

=
π N

2

πN

=
N !

(N −
N

2
)!( N

2
)!

∼ 2N

所以你可以认为系统在从初态走向平衡态的过程中是有熵产生的，只有在达到精细平
衡之后，熵产生才停止。这个例子还可以用于演示统计物理中的 Boltzmann 分布等等
分布是如何产生的：系统的微观态需要使用“每个粒子出现在 A 中还是 B 中”：
{σ1,σ2,⋯ ,σN} 中表征，每一个微观态等概率出现。但是，统计物理中我们通常把这
里的微观态进一步粗化了，我们谈论 A 中的粒子数目，所以我们有二项分布。如果我
们这样定义熵：



S(t) = −∑
{σi}

P({σi}, t) lnP({σi}, t)

它可以写成：

S = −∑
n

pn(t) ln pn(t) +∑
n

pn(t) lnC n
N

值得注意的是，我们只能说在平衡的时候，S(t) = −∑{σi}
P({σi}, t) lnP({σi}, t) 这样

定义的熵达到最大值（因为平衡时每个微观态等概率出现）；但是我们不能说
S = −∑n pn(t) ln pn(t) 达到最大值！我们还可以定义一个量：

H(t) =∑
n

pn(t) ln
pn(t)

πn

= S∞ − S(t)

它在平衡时显然为 0，称为 KL 散度。因此，KL 散度的减少意味着熵产生，它衡量了
系统到达稳态之前还能产生多少熵！


