
（官方QFT）量子电动力学：散射振幅和重整化
#Quantum_Field_Theory

QED散射振幅- 输入&输出电子的情形
在使用 LSZ Reduction Formula 之前，我们先找找耦合了电磁场的 Dirac 场能产生单粒
子态的升降算符。考虑 Dirac 场的模式展开：

ψ(x) = ∑
s

∫ ~
dp(bs(p)us(p) exp(ipx) + d†

s(p)u⋆
s(p) exp(−ipx))

这个场有两种粒子，记两种单粒子态为 |p, s, +⟩ = b
†
s(p)|0⟩, |p, s, −⟩ = d

†
s(p)|0⟩，简单

的计算立刻知道：

⟨p, s, +|ψ(x)|0⟩ = ⟨p, s, −|ψ̄(x)|0⟩ = 0

以及：

⟨p, s, −|ψ(x)|0⟩ = u⋆
s(p) exp(−ipx), ⟨p, s, +|ψ̄(x)|0⟩ = ūs(p) exp(−ipx)

其中 ū = u†iC 0, ψ̄ = ψ†iC 0。

下面考虑与电磁场耦合之后的 Dirac 场。前面已经说过，系统的拉氏量是：

L = −ψ̄(C μ(∂μ − ieAμ) + m)ψ −
1

4
FμνF

μν,  Fμν = ∂μA
ν − ∂νAμ

此时这个拉氏量仍然有全局的 U(1) 对称性，因此仍然有守恒荷 Q = ∫ d3xψ†ψ。由
[Q,ψ] = −ψ, [Q, ψ̄] = +ψ̄ 可知 ψ, ψ̄ 起到的分别是升降算符的作用，由此可知下面两个
式子对于与电磁场耦合之后的狄拉克场仍然成立：

⟨p, s, +|ψ(x)|0⟩ = ⟨p, s, −|ψ̄(x)|0⟩ = 0

因为求内积的两个态矢不是属于 Q 的同一本征值的本征矢量。对于另外两个式子，记
vs(p) = u⋆

s(p), v̄s(p) = v
†
s(p)iC 0，我可以通过缩放 ψ 使得下面两式成立：

⟨p, s, −|v̄s(p)ψ(x)|0⟩ = −2m exp(−ipx),  ⟨p, s, +|ψ̄(x)us(p)|0⟩ = +2m exp(+ipx)

先说这是为什么，考虑 v̄sψ 中的产生算符部分：

v̄sψ = v†
siC

0d†
su

⋆
s = d†

su
T
s iC

0u⋆
s = d†

s(−2m)



所以 −2m 这个系数是从这里来的。那么我能够缩放 ψ 使得这两个式子成立，意味着
在相互作用场的矩阵元必须正比于自由场的矩阵元。这是因为：1）这个矩阵元必须在
洛伦兹变换下按照旋量的变换法则正确变换，所以它必须含有 Dirac 方程的解
us(p), vs(p)；2）exp(ipx) 这个因子是由 Heisenberg 方程带来的。

回忆一下，最初导出 LSZ Reduction Formula 的时候我们是用这样的产生算符制造入
射态的：

Cα = ∫ d4xαuα(xα)ϕ(xα),  uα(xα) = g(tα − T−)∫ d3p

(2π)3
exp(−ipx)

ϕ(xα) 负责升起各个频率混合的单粒子态，uα(xα) 负责筛选出指定频率、处在无穷远
过去的态。当时我们推出了这样的形式：

现在，根据上文的推导，我们使用 v̄sψ 升起自旋 s 的 d 类粒子单粒子态；使用 ψ̄u 升
起自旋 s 的 b 类单粒子态，所以上面的公式应作相应调整。举例：考虑
(p1, p2), (s1, s2) 的两个 b 类粒子射入，两个 (p′

1, p′
2), (s′

1, s′
2) 的 b 类粒子出射的过程：

首要任务是计算真空期 望值 ⟨0|Tψa′
2
(x′

2)ψa′
1
(x′

1)ψ̄a1(x1)ψ̄a2(x2)|0⟩，现在留着四个独立
指标，算完了再带回去和矢量缩并。我们的原材料是 Dirac 场的自由传播子：

⟨0|Tψa(x)ψ̄b(0)|0⟩ = Sab(x),S(x) = ∫ −
id4k

(2π)4
Ŝ(k) exp(ikx), Ŝ(k) =

m − i

k2 + m2 − iϵ

和电磁场的自由传播子 ：

⟨0|TAμ(x)Aν(0)|0⟩ = ∫ −
id4k

(2π)4
Δ̂μν(k) exp(ikx), Δ̂μν(k) =

gμν − (1 − ξ)
kμkν

k2

k2 − iϵ

⟨out|in⟩ =
1

(2m)4
∫ (id4x1)(id4x′

2)(id4x1)(id4x′
2) exp(i(p1x1 + p2x2 − p′

1x
′
1 − p′

2x
′
2))

(m2 − ∂ 2
1 )(m2 − ∂ 2

2 )(m2 − ∂ 2
1′)(m2 − ∂ 2

2′)

⟨0|T (ψ̄(x′
2)us′

2
(p′

2))† (ψ̄(x′
1)us′

1
(p′

1))† ψ̄(x1)us1
(p1) ψ̄(x2)us2

(p2)|0⟩

k



将 Dirac 场和电磁场耦合的拉氏量视作微扰，记：

S1 = ieψ̄C μAμψ,  S0 = −mψ̄C μ∂μψ −
1

4
F μνFμν

我本来应该计算的是：

∫ DψDψ̄DA ψa′
2
(x′

2)ψa′
1
(x′

1)ψ̄a1
(x1)ψ̄a2

(x2) exp(i(S0 + S1))

∫ DψDψ̄DA  exp(i(S0 + S1))

但是只有 c 数和 Grassmann 变量的高斯积分的各阶矩是能算的，那么把分子分母都变
成高斯积分下期望的形式：

∫ DψDψ̄DA ψa′
2
(x′

2)ψa′
1
(x′

1)ψ̄a1
(x1)ψ̄a2

(x2) exp(i(S0 + S1))/ ∫ DψDψ̄  exp(iS0)

∫ DψDψ̄DA  exp(i(S0 + S1))/ ∫ DψDψ̄  exp(iS0)

与实标量场一样，首先这个除法会消去所有真空图，其次非连通图对散射振幅没有贡
献，因此我只计算连通图。连通图至少需要展开到关于 S1 的二阶才会出现（一阶展开
中会出现 Aμ 的一阶矩，这会导致一阶项为 0），直接考虑计算下面这个东西的期望：

1

2!
⟨ψ2′ψ1′ψ̄1ψ̄2 (i∫ d4y1Aμ1(y1)ψ̄b1C

μ1

b1c1
ψc1(y1))(i∫ d4y2Aμ2(y2)ψ̄b2C

μ2

b2c2
ψc2(y2))⟩0

看看缩并的方法：首先，作为 c 数，Aμ1  必须和 Aμ2  缩并，然后由于 ψ 只能和 ψ̄ 缩并
的限制，所有的 ψ, ψ̄ 共有四种缩并方式，通过尝试发现，如果我交换入射外点与内点
的缩并方式会产生负号；我交换出射外点与内点的缩并方式也会产生负号，那么两个
一起交换就不改变符号。那么我可以只有两张图，其中一张图是：

(+ie)2 ∫ (id4y1)(id4y2)C μ1

b1c1
C

μ2

b2c2
Δμ1μ2

Sc1a1
(y1 − x1)Sa′

1b1
(x′

1 − y1)Sc2a2
(y2 − x2)Sa′

2b2
(x′

2 − y2

当然这张图还有另一种写法，就是把 a1, a2 互换，a′
1, a′

2 互换；x1,x2 互换，x′
1,x′

2 也
互换。另一张图和这张图差一个负号，为了写出另一张图，我可以只交换出射粒子或
者只交换入射粒子，这里我选择交换 a′

1, a′
2 和 x′

1,x′
2。

下面把这张图塞进 LSZ Reduction Formula 就可以算出散射振幅了。定义：

⟨out|in⟩ = iT (2π)4δ(p1 + p2 − p′
1 − p′

2)

我们将 T  称为散射矩阵的矩阵元。计算结果是：

T = (ūs′
2
(p′

2)(ie)C μ2us2
(p2))(ūs′

1
(p′

1)(ie)C μ1us1
(p1))Δμ1μ2

(p1 − p′
1)

另一张图也可以用类似的方法做出来。



QED 散射振幅- 输入&输出包含光子的情形
下面考虑输入光子的情形。同样地需要先找到能够升起单光子态的算符。首先考虑自
由电磁场，E,B 可以使用 aλ, a†

λ
 模式展开，利用 aλ 升起单光子态：|k,λ⟩ = a

†
λ
(k)|0⟩

。引入符号 ϵλ 0(k̂) = 0, ϵλ
i(k̂) = ieλ

i(k̂), ϵλμ(k̂) = gμνϵλ
ν(k̂)，计算可知

⟨k,λ′|ϵλ
μ⋆Aμ(x)|0⟩ = δλλ′ exp(−ikx)

在有相互作用的情形，仍然选择 Aμ 的大小使得上式成立，现在考虑入射一个正电子
一个负电子出射两个光子的过程。应该计算：

散射振幅的计算结果是：

T = ϵλ′
1μ

(k′
1)ϵλ′

2ν
(k′

2)v̄s2
(p2)ieC νŜ(p1 − k′

1)ieC μus1
(p1)

精确传播子和精确顶点函数

通过研究费曼图的符号可以说明，为了修正传播子和顶点函数，我只需要研究三种
图：输入光子、输出光子的传播子；输入费米子、输出费米子的传播子；以及连接了
两个费米子、一个光子的内点。先考虑光子的传播子的修正。精确的光子传播子=自
由传播子+插入一圈+插入两圈+...，所以：

Δ̂μν(k) = Δμν + ΔμρΠρσΔσν + Δμρ1Π
ρ1σ1Δσ1ρ2Π

ρ2σ2Δσ2ν

使用 Wald-Takahashi 恒等式，可以证明：

kμΠμν(k) = 0,  kνΠμν(k) = 0

另外可以证明这里的 Πμν 服从张量变换律 Πμν = Λμ
ρΛν

σΠρσ，那么 Λk = k 的情形就
会给 Π 施加约束，由这个约束解出：

Πμν(k) = f1(k2)gμν + f2(k2)kμkν

结合上面提到的两条性质，可以解出 f1(k2) = −k2f2(k2)，那么：

Πμν := π(k2) k2 P μν(k),  π(k2) = f2(k2),  P μν(k) = (gμν −
1

k2
kμkν)

⟨out|in⟩ =
1

(2m)4
∫ (id4x1)(id4x′

2)(id4x1)(id4x′
2) exp(i(p1x1 + p2x2 − k′

1x
′
1 − k′

2x
′
2))

(m2 − ∂ 2
1 )(m2 − ∂ 2

2 )(m2 − ∂ 2
1′)(m2 − ∂ 2

2′)

⟨0|T (ϵλ′
2

μ2⋆(k̂′
2)Aμ2

(x2))† (ϵλ′
1

μ1⋆(k̂′
1)Aμ1

(x1))† ψ̄(x1)us1
(p1) v̄s2

(p2)ψ(x2)|0⟩



把这里的 Πμν 回代，可以解出 Δ̂：

Δ̂μν(k) =
Pμν(k)

k2(1 − π(k2))
+ ξ

kμkν

k2

取 ξ = 0，也就是 Landau 规范，我们希望此时精确传播子和没有修正的自由传播子有
相同的极点（这已经做到了）并且在极点处有相同的留数，这要求

Pμν(0) =
1

1 − π(0)
Pμν(0) ⇒ π(0) = 0。

下面考虑求出 Πμν(k)，它对应的图是：

(−1)∫ −id4l

(2π)4
Tr(Ŝ(l + k)ieC μŜ(l)ieC ν) =

e2

(2π)4
∫ (−id4l)Tr(Ŝ(l + k)C μŜ(l)C ν)

注意我们现在算的是一个费米子环，它有两个自由指标。做 Wick 转动，把 k, l 同时逆
时针转动 90∘，令 k4 = k4 = ik0, l4 = l4 = il0,C4 = C 4 = iC 0，此时有 C 矩阵之间的

对易关系 1

2
{Ci,Cj} = δij。同时令 Π4j = iΠ0j, Πj4 = iΠj0, Π44 = i2Π00，那么：

Πij(k) =
e2

(2π)4
∫ d4lETr(

m − i( + )

(l + k)2 + m2
C i

m − i

l2 + m2
C j)

求迹之后做 Feymann 参数化，得到：

Πij(k) =
e2

(2π)4
∫

1

0
dx∫ d4lE

4((l ⋅ (l + k) + m2)δij − (li + ki)lj − (lj + kj)li)

((l + xk)2 + D)2

其中 D = x(1 − x)k2 + m2，令 q = l + xk，换成对 q 的积分（注意，分子上 q 的一次
项都可以扔掉了，积分完了得到 0）：

Πij(k) =
e2

(2π)4
4∫

1

0

dx∫ d4qE
(q2 − x(1 − x)k2 + m2)δij − 2q iq j + 2x(1 − x)kikj

(q2 + D)2

这里面出现了 f(q2)q iq j 这种项，利用性质：

∫ d4qE q iq jf(q2) = δij ∫ d4qE q2
1f(q) =

1

4
δij ∫ d4qE q2f(q2)

得到：

Πij(k) =
e2

(2π)4
4∫

1

0

dx∫ (2πq3dq)

( q2

2
− x(1 − x)k2 + m2)δij + 2x(1 − x)kikj

(q2 + D)2

l k l



先完成对内层 q 的积分，这里肯定要发散，所以考虑 q = 0 → Q 的积分，积分结果
是：

其中最多保留到 Q 的常数项。之后应当从中识别关于 kδij 的发散，其中有常数乘以
δij 的发散，有正比于 k2（即 D）的发散，有正比于 kikj 的发散。所以我们有三个积
分自由度。最后整理的结果是：

πij(k2) =
e2

2π2
{(k2δij − kikj)∫

1

0
d xx(1 − x) ln

D

m2
+ (b1 + b2k

2)δij + b3k
ikj}

根据前面给出的 Πij 的形式，必须有 b1 = 0，b2 = −b3，再使用 On-Shell Scheme 固
定得到 b2 = b3 = 0。那么立刻得到：

π(k) =
e2

2π2
∫

1

0

dx x(1 − x) lnD

在 k2 ≫ m2 时，计算上述积分可得 π(k) ∼
e2

2π2
( 1

6
ln

k2

m2
−

5

18
)。由于前面已经说过

精确传播子是 Δ̂μν(k) ∝
Pμν(q)

q2(1 − π(q)) + iϵ
，这里的 π(k) 随着 k2 逐渐增大逐渐增大，

这意味着这个理论的相互作用将随着能标的变大而变强，出现所谓紫外发散（其反面
是渐近自由）。

下面考虑对费米子传播子的修正，修正费米子传播子的时候插入的 1 PI 图是这样的：

根据费曼规则可以写出这张图：

Σ(p) = ∫ −
id4l

(2π)4
ieC νŜ(l + p)ieC μΔ̂μν(l)

∫
1

0
dx{(2π2Q2 + 2π2D(1 − 4 lnQ) + 4π2D lnD)δij

+ (2x(1 − x)kikj + (m2 − x(1 − x)k2)δij)

(4π2(2 lnQ − 1) − 4π2 lnD)}



但是现在选择重整化 Scheme 的时候有一个困难：它的精确传播子的 L-K 形式是：

我们主要解释前半部分是怎么出来的，这一部分对应于单粒子态，我们知道自由传播

子是 Ŝ(p) =
m − i

p2 + m2 − iϵ
，注意 C μC ν = −C νC μ，C 0C 0 = −𝟙,C iC i = 𝟙，可得到恒

等式 p2 ⋅ 𝟙 = 2，那么：

Ŝ(p) =
m − i

2 + m2 − iϵ
=

m − i

(√m2 − iϵ − i )(√m2 − iϵ + i )
=

1

i + m − iϵ

所以出现了上面的第一部分。但是你没法定义 LK 形式的精确传播子的奇点，因为
= im 这个点连接了一条割线（这是由于光子质量为 0，导致 mth = m 导致的），

所以后面讨论的时候都给光子传播子加一个小小的质量，让它变成（Feymann
Gauge）：

Δ̂μν =
gμν

l2 + m2
γ − iϵ

这张图变成（已做 Wick 转动）：

Σ( ) = −
e2

(2π)4
∫ d4lC i

m − i( + )

(l + p)2 + m2
C i 1

l2 + mγ 2

经过类似的计算步骤可以的得到：

其中 D = x(1 − x)p2 + xm2 + (1 − x)m2
γD0 = Dp2=−m2，c1, c2 是该积分待定的两个自

由度，重整化条件给出：

c1 = 1 − 2 ln
m

mγ

+ O(
mγ

m
),  c2 = mc1

p

p

p

p

p

p p p

p

p
l p



下面考虑唯一要计算的那个三度内点的重整化，最低阶的修正是这样的：

注意：你不需要考虑将标有 l 的那条光子线连接到中间标有 μ 的点的左侧的情况，因
为这样的话图中将出现我们已经计算过的精确传播子的一部分。这个修正是精确到 e3

的，更高阶修正需要再引入一条光子线来精确到 e5。将这个顶点函数记为：

V μ(p, p′) = ieC μ + V
μ

1 (p′, p) + O(e5)

其中第二项对应的图：

V
μ

1 (p, p′) = ∫ −id4l

(2π)4
ieC ρŜ(l + p′)ieC μŜ(l + p)ieC νΔ̂νρ(l)

结果是；

这里的 D0 = Dp′=p,p2=−m2。但是我们需要特殊的重整化 Scheme：我们希望在
p′ = p, p2 = −m2 的情形下有：

ūs′(p′)V μ(p′, p)us(p) = ūs′(p′)ieC μus(p)

这意味着我们考虑入射粒子的动量几乎没有变化就变成了出射粒子，此时我们要求对
顶点函数的修正为 0，计算结果是：

ζ = 5 − 4 ln
m

mγ

+ O(
mγ

m
)

特别地，可以考虑 p2 = −m2, p′2 = −m2 的情况（入射、出射粒子均在质壳上），此
时顶点函数可以化简为：



其中 F1(0) = 1 + O(α2),F2(0) =
α

2π
+ O(α2)，其中 α =

e2

4π
 是精细结构常数。这个

结果与电子反常磁矩有关。

Wald-Takahashi 恒等式
回顾一下，若在场量的变化 ϕa(x) → ϕa(x) + δϕa(x) 下，拉氏量变化了一个散度：
L(x) → L(x) + ∂μK

μ(x)，那么作用量不变，我们说系统在这个对 ϕ 的变换下有对称
性，根据诺特定理可以得到守恒流：

jμ(x) = δϕa(x)
∂

∂(∂μϕa(x))
L − Kμ(x)

这个可以插入 Ward-Takahashi 恒等式，得到一个量子场论版本的诺特定理：

对于 QED 的拉氏量算一下：

L = −ψ̄( + m)ψ −
1

4
FμνF

μν + Aμψ̄ieC
μψ

注意这里的 ψ, ψ̄ 全都是 Grassmann 变量，而 Aμ 是正常的变量。做全局 U(1) 变换：

δψ = −iϵeψ,  δψ̄ = +iϵeψ̄,  δAμ = 0

jμ = (δψa)
∂

∂(∂μψα)
L + (δψ̄a)

∂

∂(∂μψ̄a)
L

计算：

∂



那么

jμ(x) = iϵeψ̄C μψ

选择 n = 2，ϕa1
(x1) = ψ̄α(x),ϕa2

(x2) = ψβ(y) 代入后得到：

∂μ⟨0|TJ μ(x)ψ̄α(x)ψβ(y)|0⟩ = 0

两侧乘以 ieC ν
αβ，对 α,β 求和得到：

∂μ⟨0|TJ μ(x)J ν(y)|0⟩ = 0

可以看看左边这个东西的图表示是什么，当然首先有非连通图，但是 ⟨0|TJμ(x)|0⟩ 在
位置空间中的表示中会出现 S(x − x) 这样的东西，最后得到的结果必然和 x 无关，再
求个导数得到 0，因此我可以不考虑所有非连通图，只考虑连通图。这个连通图里面
有两个内点，当然每个内点伸出了一个光子线，对应了所有下面这样的图：

这些其实就是我们当时在计算光子传播子修正的过程中遇到的那些图。在动量空间
中：

kμΠμρ(δνρ + Δ̂ρσ(k)Πσν(k) + ⋯) = 0

括号里面这个矩阵是非奇异的，所以最后解得 kμΠμν(k) = 0。这是我们做重整化的时
候使用的约束。交换 μ, ν 两个指标无非会得到费米子环反向的图从而引入负号，所以
同样得到 kνΠμν(k) = 0。

还有一个有趣的特例是令 n = 2,ϕa1
(x10) = ψα(y),ϕa2

(x2) = ψ̄β(z))，此时得到：

∂μ⟨0|TJ μ(x)ψα(y)ψ̄β(z))|0⟩ = (−eδ(x − y) + eδ(x − z))⟨0|Tψα(y)ψ̄β(z)|0⟩

∂

∂(∂μψα)
L =

∂

∂(∂μψα)
(−(ψ̄C ν)β∂νψβ)

= +(ψ̄C ν)β
∂

∂(∂μψα)
(∂νψβ)

= (ψ̄C μ)α



左边 ψα,ψβ 显然是两个外点，J μ 提供了一个内点，但是光子的那条腿还没缩并。所
以左边这个东西的精确结果是（动量空间中）3 度顶点函数连着两个精确传播子：

对于右边，直接计算傅里叶变换：

所以最终提取出：

(p′ − p)μŜ(p′)Vμ(p′, p)Ŝ(p) = e(Ŝ(p) − Ŝ(p′))

这给出了顶点函数和精确传播子的一个关系。

电子的反常磁矩

最后我们考虑在弱的电磁场中的费米子。为了建模这种粒子，我们为本来涨落的量子
化的电磁场 Aμ(x) 加上一个没有量子化的背景场 ημ(x)，拉氏量发生变化：

看一下多出来的项，首先最后一项是常数不用管。其次我可以把 fμν∂ νAμ 写成
∂ νfμνAμ，因为它们之间只差一个全导数，根据自由电磁场的 Maxwell 方程这一项为 0
。也就是说我们只需关心多出来的 ημ(x)ψ̄ieC μψ 这一项。这一项引入了额外的 3 度
（或者你可以认为是 2 度）顶点 ieC μημ(y)：



我们计划使用 LSZ Reduction Formula 来计算电子磁矩的进动。考虑一个粒子 (p, s) 射
入，一个粒子 (p′, s′) 射出的过程，根据 LSZ Reduction Formula：

有两个外点，要想把它们使用内点连起来，内点的自由指标只能和 ημ 去缩并（也就是
说我们只能使用新得到的这个 2 度内点来连接两个外点）。所以有下面的图：

我们就不一阶一阶微扰那样写了，直接使用刚刚得到的顶点函数和精确传播子来写这
些图的综合，在位置空间中：

⟨0|T ⋯ |0⟩ = ∫ id4y′ id4y id4z(S(x′ − y′)W μ(y′, y, z)ημ(z)S(y − x))

代入 LSZ Reduction Formula，得到；

⟨f|i⟩ = δs′s2ωp(2π)3δ(p′ − p) + ūs′(p′)V μ(p′, p)us(p)η̂u(p′ − p) + O(η2)

把顶点函数带进去：

下面，考虑电子在一个非常弱的外磁场 B(x) = B(t)x̂ 中，这个磁场非常缓慢地随时间
变化，以至于可以忽略电磁感应的高阶效应。设 s = 1, p = 0, s′ = −1, p′ ≈ 0。根据
ūs′(p)us(p) = 2mδs′s，那么第一项直接没了，第二项里面的第一部分也没了。利用
Sμν = −S νμ 做个反对称化，得到：



⟨f|i⟩ =
ie

2m
(F1(0) + F2(0))ū−(0)Sμν(qμη̂ν(q) − qνη̂μ(q))u+(0)

利用：

qμη̂ν(q) − qνη̂μ(q) = ∫ fμν exp(−iqz)d4z ≈ (2π)3δ(q)∫
+∞

−∞
fμν(t)dt

所以现在只有 f23(t) = −f32(t) = B(t)。由于绕着 x 轴旋转初始磁矩指向 z 方向的粒子

θ ≪ 1 角度时，它在 −z 态上的振幅是 i
2
θ，所以进动角度：

θ =
e

m
(F1(0) + F2(0))∫ B(t)dt ⇒ ω(t) =

e

m
(F1(0) + F2(0))B(t)

这意味着电子的自旋磁矩是 μ =
e

2m
(F1(0) + F2(0))，正是因为 F2(0) ≠ 0，导致了所

谓的反常磁矩！


