
（官方QFT）旋量场和矢量场的路径积分
#Quantum_Field_Theory

Grassmann 代数
为了为费米子系统制造一套路径积分方法，我们首先需要引入 Grassmann 代数。考虑
一个费米子系统，它的升降算符 cj, c†

k 满足：

{cj, ck} = {c
†
j, c

†
k} = 0,  {cj, c

†
k} = δjk

定义相干态 |α⟩ 是降算符的本征态，那么：

ckcj|α⟩ = αkαj|α⟩,  cjck|α⟩ = αkαj|α⟩

由于 ck, cj 反对易，这直接导致 αkαj + αjαk = 0。满足这个方程的一组变量
α1, ⋯αN  称为 Grassmann 变量。

下面先考虑单个 Grassmann 变量的特性。首先有 ξ ≠ 0, ξ2 = 0，同时我们要求 ξ 和任
意 c 数 x 对易：ξx = xξ。此时所有级数都会被截断，比如说 exp(ξx) = 1 + ξx，那
么，一般而言，ξ 的函数都可以写成 f(ξ) = a + ξb 。现在考虑 Grassmann 变量的积
分：∫ dξf(ξ)

积分元是 Grassmann 变量，所以这种积分我们之前没有见过，需要重新定义，就像随
机积分一样。我们定义它有以下两个性质：

线性性：∫ dξ(f(ξ)u + g(ξ)v) = (∫ dξf(ξ))u + (∫ dξg(ξ))v。
对积分元的平移不变性：∫ dξf(ξ + u) = ∫ dξf(ξ)

那么根据以上性质，有：

∫ dξ(ξ + u) = ∫ dξ ξ ⇒ ∫ dξ u = 0

根据线性性，我们知道 ∫ dξ (a + ξb) ∝ b，我们将其定义为：

∫ dξ (a + ξb) = b ⇒ ∫ dξ ξ = 1

或者说我得到一般公式：

∫ dξf(ξ) =
∂

∂ξ
f(ξ)



如果我做换元，令 ξ → uξ，但是换元之后积分值应当是不变的，所以我得到：

∫ d(uξ)(a + uξb) = b =
1

u
∫ dξ(a + uξb)

于是就导出了积分测度之间的关系：

d(uξ) =
1

u
dξ

我们定义积分测度和 ξ 是反对易的：

dξξ = −ξdξ

现在考虑 N  个独立 Grassmann 变量的情形，我们说这些变量独立是在说

1, ξj, ξjξk(j < k), ξjξkξl(j < k < l), ⋯

这些东西不能相互表出。那么这些东西就是某个函数空间中的基底，一个函数应该
是：

f(ξ) = a + ξibi +
1

2!
ξiξjcij + ⋯ +

1

N !
ξi1

⋯ ξiNdi1⋯iN

这里带着下标的 c 数都是全反称的，所以最后一项可以简化成 ξ1 ⋯ ξNd。定义这
个函数的积分：

∫ dNξf(ξ) = ∫ dξN ⋯ dξ1f(ξ) = d

那么利用上面这个公式，我们有：

∫ dξi = 0,  ∫ dξiξj = δij

同时我们定义积分变量之间的关系、积分测度和 Grassmann 变量的对易关系:

dξidξj = −dξjdξi,  dξidξj = −ξjdξi

我们可以对这些变量做线性变换：ξ′
i = Jijξj，考虑只有两个变量的情形：

(J11ξ1 + J12ξ2)(J21ξ1 + J22ξ2) = (J11J22 − J12J21)ξ1ξ2

从而我们知道了一般情况下：

ξ′
1 ⋯ ξ′

N = (det J)ξ1 ⋯ ξN



Grassmann 变量有高斯积分公式，回忆标准的 c 数的高斯积分公式和协方差矩阵的逆
有关，这里的高斯积分可以证明和一个矩阵的 Pfaffian  有关：

∫ dNξ exp( 1

2
ξTMξ) = pf(M),  (pf(M))2 = detM

其中这里的 M 是反对称矩阵，Pf(⋅) 的计算方式是：

还有一种 2N  个自由变量的高斯积分：

∫
N

∏
i=1

(dβidαi) exp(αTMβ) = detM

证明：将 M 矩阵视作一个坐标变换矩阵，令 γi = Mijβj，那么：

我引入了记号 s，这是将所有 β 聚合在一起产生的符号影响，后面我们把所有的 γ 分
开的时候，同样的符号影响会再产生一次，因此 s2 = 1 。在最后一步的积分中，我需
要将每一个 (1 + αiγi) 恰好移动到与之对应的积分变量后面，这会产生偶数次
Grassmann 变量的交换，因此并不影响符号。
还有一个情况，如果把上面 α 换成 αT + ξTM −1，β 换成 β + M −1η，这里的 ξ, η 可以

考虑多变量情形下的积分换元，令 ξ′ = Jξ，那么 f(ξ) 中最后一项会变成
ξ1 ⋯ ξN(det J)d，类比之前单变量时的推导立刻得到：

dN(Jξ) = (det J)−1dNξ

∫ ∏
i

(dβidαi) exp(αTMβ) = ∫ ∏
i

(dβidαi) exp(αiγi)

= s∫ dN(M −1γ)dα exp(αiγi)

= (detM)s∫ dNγdNα exp(αiγi)

= (detM)∫ (dγ1dα1) ⋯ (dγNdαN) exp(αiγi)

= (detM)∫ (dγ1dα1) ⋯ (dγNdαN)(1 + α1γ1) ⋯ (1 + αNγN)

= detM



都是复数，也可以都是 Grassmann 变量，代入后展开，利用 ξTM −1η 这个整体与所有
东西的对易性，可以得到：

通过把：

(detM) exp(−ξTM −1η) = ∫ ∏
i

(dβidαi) exp(αTMβ + ξTβ + αTη)

两边展开，对比 ξiηi 前面的系数可以得到类似于高斯积分的 Wick 定理：

你可以根据缩并的时候要移位的次数快速确定这里的正负号，比如 38 式，执行
(ij), (kl) 这个缩并不需要任何移位，但是执行 (il), (kj) 缩并需要把 αl 移位两次，把
αj 移位一次，这就产生了一个负号。

我们的场量是复数，所以我们有时候需要使用复 Grassmann 变量。之前的 Grassmann
变量就像实数一样，定义它在复共轭操作下等于自身，x⋆ = x, (xy)⋆ = yx，现在我们
把 2N  个实变量变成 N  个复 Grassmann 变量，定义：

ψi =
1

√2
(xi + iyi),  ψ⋆

i =
1

√2
(xi − iyi)

我可以说我从 (xi, yi) → (ψi,ψ
⋆
i ) 是做了坐标变换，容易知道：

dψidψ
⋆
i = +idxdy,  ψ⋆

iψi = −iyixi

这两个变化会抵消，导致：

∫ dψidψ
⋆
iψ

⋆
iψi = ∫ dxidyiyixi = 1

也有和之前一样的结论：

∫ ∏
i

(dβidαi) exp(αTMβ) = exp(ξTM −1η)∫ ∏
i

(dβidαi) exp(αTMβ + ξTβ + αTη)

= detM



∫ dNψdNψ⋆ exp(ψ⋆Mψ) = detM

以及 Wick 定理：

费米子的相干态路径积分

在之前的路径积分中，我们插入的完备性关系是位置算符本征矢量的完备性关系
∫ dx|x⟩⟨x| = 1，或者场算符的本征矢量的完备性关系 ∫ Dϕ|ϕ⟩⟨ϕ| = 1，这是因为相等
的时间点上的（玻色子）的场算符互相对易，因此 |ϕ(x)⟩ 是相等的时间点上场算符的
相同本征态，只有插入场算符的本征态，你才能把算符变成数，才能构建一个路径积
分理论。对于费米子，相等的时间点上场算符根本不对易，不能像玻色子一样构建路
径积分理论。我们需要构建所谓的相干态路径积分。
设系统有 N  个单粒子态，对应的产生、湮灭算符是 ψ1 ⋯ψN ,ψ†

1 ⋯ψ
†
N

 ，这些算符之
间满足对易关系：

{ψn,ψm} = 0,  {ψ†
n,ψ†

m} = 0, {ψn,ψ†
m} = δnm

做了二次量子化之后，哈氏量可以使用这些算符写出，并且做了正规排序：

H = H(ψ†
1, ⋯ ,ψ†

N ;ψ1, ⋯ ,ψN ; t) =
2N

∑
k=0

k

∑
j=0

A
(k,j)
a1⋯aj;aj+1,akψ

†
a1

⋯ψ†
aj
ψaj+1ψak

下文中我要定义相干态，也就是所有降算符的共同本征态。根据之前的讨论，本征值
是复的 Grassmann 变量，我定义如下关系：

{αn,ψm} = {α⋆
n,ψm} = {αn,ψ†

m} = {α⋆
n,ψ†

m} = 0

也就是这些 Grassmann 变量和任意算符交换都会出现一个负号。首先我们有空态，只
要把降算符作用在上面就得到 0，也就是完全没有粒子的态：

ψn|e⟩ = |0⟩

向空态的投影算符是：



|e⟩⟨e| = (ψ1ψ
†
1)(ψ2ψ

†
2) ⋯ (ψNψ

†
N

)

利用上面的对易关系可以看到：

αn|e⟩⟨e| = |e⟩⟨e|αn,  α⋆
n|e⟩⟨e| = |e⟩⟨e|α⋆

n

我们做一些更强的假设/定义，定义这些 Grassmann 变量和空态之间的交换关系：

相干态是：

|α⟩ = exp(−
1

2
α⋆
nαn − αnψ

†
n)|e⟩,  ψn|α⟩ = αn|α⟩

其共轭：

⟨α| = ⟨e| exp(−
1

2
α⋆
nαn − ψnαn),  ⟨α|ψ†

n = ⟨α|α⋆
n

把上面的 exp(⋅) 展开，由于有 Grassmann 变量的原因会自行截断，可以得到相干态展
开式：

利用 Grassmann 积分的性质，从这里可以证明 |α⟩⟨α| 满足如下完备性关系：

∫ dNα⋆dNα|α⟩⟨α| = 1

可以求出两个相干态的内积：

⟨α|β⟩ = exp(−
1

2
α⋆
nαn −

1

2
β⋆
nβn + α⋆

nβn)

有了这些准备，我们可以将 |α⟩⟨α| 满足的完备性关系插入到跃迁振幅里面了：

把很多段跃迁振幅拼接一下，可以得到：

⟨α| exp(−iH(t))|α′⟩ = ∫
ψ(t)=α,ψ(t′)=α′

Dψ⋆
Dψ exp(iS)



拉氏量：

L(ψ⋆,ψ, t) =
i

2
ψ⋆
nψ̇n −

i

2
ψ̇⋆
nψn − H(ψ⋆,ψ, t)

积分测度是：

Dψ⋆
Dψ =

N

∏
n=1

dψ
(1)⋆
n dψ

(1)
n ⋯

N

∏
n=1

dψ
(M)⋆
n dψ

(M)
n ,  M → ∞

上标 i 代表第 i 个时间点上的场构型。

我们暂且不加证明地给出真空期望值的计算方法，与之前的标准路径积分相同：

在计算真空期望值时，积分区间是从无穷远过去到无穷远未来，因此可以通过分部积
分并忽略边界将拉氏量改成：

L = iψ⋆
n(t)ψ̇n(t) − H(ψ⋆,ψ)

下面考虑狄拉克场，处理一个场的时候，我可以先将空间离散化，将场视作格点上的
系统，利用上面的结论后再连续化。最终得到狄拉克场的拉格朗日密度：

L = −ψ̄( + m)ψ,  ψ̄ = ψ†iC 0 (ψ̄a = ψ⋆
b(iC0)ba)

电磁场的路径积分

我们不加证明地指出电磁场的拉氏量是：

L =
1

2
(E 2 − B2) = −

1

4
FμνF

μν

这相当于我们选了 Fμν(x) 作为描述场位形的变量。但是不是所有的 F μν(x) 都是可行
的路径，因为这个张量的值和 E,B 直接有联系，但是 E,B 的值受到麦克斯韦方程组

的约束 ∇ ⋅ B = 0, ∇ × E = −
∂B

∂t
，不满足这个约束的路径不能贡献振幅。为了挑选那

些贡献振幅的路径，我们通常使用 4-势 Aμ 作为标志场位形的变量，
Fμν = ∂μAν − ∂νAμ。这个东西有规范自由性，在 A′

μ = Aμ − ∂μα 下 Fμν 保持不变。
这会导致路径积分出现严重问题：所有等效的路径将以相同的贡献出现在路径积分
中，相当于我们对每一个构型都求和了无数次，这会导致分子、分母都爆炸。所以实
际使用中我们应当指定一种规范。形式化地，指定规范这件事情意味着路径积分被写
成下面的样子：

∂



⟨0|Tw1(x1) ⋯wN(xN)|0⟩ =
∫ DAw1(x1) ⋯wN(xN) X[A]

∫ DA X[A]

只要这里的 X[A] 满足：

∫
A∈C[F ]

DA X[A] = η exp(−
i

4
∫ d4xFμν(x)F μν(x))

其中 C[F ] 指由 Fμν 指定的一个等价类中的路径。这件事情有很多种做法，我们考虑动
量空间中的一些规范，在动量空间中的规范不变性是 Aμ(k) → Aμ(k) − iα(k)kμ，规范
的选法包括：

下面在 Rξ 规范下计算传播子。同样先做个 Wick 转动，令
ix0 = x4 = x4, iA0 = A4 = A4，获得欧氏空间中的作用量：

傅里叶变换：

SE =
1

2
∫ d4kE

(2π)4
k2(A(k) ⋅ A(−k) − (k̂ ⋅ A(k))(k̂ ⋅ A(−k))

根据前面的讨论，在动量空间中改变 A(k) 沿着 k 方向的成分不导致 Fμν 的变化，所

以我在作用量中添加一项 1

ξ
(k̂ ⋅ A(k))(k̂ ⋅ A(−k)) 没有任何影响，这个就是 Rξ 规范中

的允许的沿着 k 方向的涨落。那么动量空间里的作用量就写成了两个方向上的高斯分
布：

类时/类空/类光规范：nμAμ = 0, nμ 是指定的四矢量
洛伦兹规范：kμA

μ = 0

库伦规范：kiA
i = 0

有一种洛伦兹规范的改版（软约束）：允许 kμAμ 服从以 ξ 为方差的高斯分布，这
被称为 Rξ 规范

−SE = iS

= −
i

4
∫ d4xFμνF

μν

=
i

4
∫ d4x(∂μAν − ∂νAμ)(∂μAν − ∂ νAμ)

= −
i

2
∫ d4x(gμνA

μ∂ 2Aν − Aμ∂μ∂νA
ν)

=
1

2
∫ d4xE(A ⋅ ∇2A − A ⋅ ∇∇ ⋅ A)



SE =
1

2
∫ d4kE

(2π)4
k2 (|A⊥(k)|2 +

1

ξ
|A∥(k)|2)

这两个方向是独立的，所以你可以方便地计算关联函数（就是两个防线上的关联函数
相加），得到如下结果：

并做 Wick 转动回到实空间，注意欧氏空间中的 δij 会变成闵氏时空中的 gμν：

狄拉克场和电磁场的耦合

我们考虑如何把狄拉克场和电磁场耦合起来。我们知道狄拉克场的拉氏量：

L = −ψ̄(C μ∂μ + m)ψ

有全局的 U(1) 对称性，但是如果我做一个局部的 U(1) 变换：

ψ = exp(iα(x))ψ′,  ψ̄ = exp(−iα(x))ψ̄′

把这个变换塞进去，得到此时的拉氏量：

L = −ψ̄′ (C μ(∂μ + i
∂α(x)

∂xμ
) + m)ψ′

我们相当于通过这个 U(1) 变换引入了一个（经典）矢量场 αμ(x) = −∂μα(x)，并且这
个矢量场满足约束 ∂μaν − ∂νaμ = 0。
现在我们要把这个场换成一个量子场，要求它有涨落，最简单的办法是把拉氏量改成
下面这样：

L = −ψ̄(C μ(∂μ − iaμ(x)) + m)ψ −
1

4e2
(∂μaν − ∂νaμ)(∂μaν − ∂ νaμ)

可以验证，现在如果对 ψ, ψ̄ 做局域 U(1) 变换，同时变换这个矢量场

αμ(x) → α′
μ(x) = αμ(x) − ∂μα(x)，那么拉氏量是不变的。令 1

e
aμ(x) = Aμ(x)，拉氏

量重写为：



L = −ψ̄(C μ(∂μ − ieAμ) + m)ψ −
1

4
FμνF

μν,  Fμν = ∂μA
ν − ∂νAμ

现在我们宣称这里的 Fμν 就是对应了量子化的电磁场，为了验证这一点，我们可以求
出这个系统对应的经典运动方程（最小作用量解）：

∂νF
μν(x) = J μ(x),  J μ(x) = ieψ̄(x)C μψ(x)

这是其中两个 Maxwell 方程，该系统对应的“电荷”是 ρ(x) = eψ†(x)ψ(x)，这与全局

U(1) 对称性给出的 Dirac 场的守恒荷是相同的，也就是说 Dirac 场描述的自旋 1

2
 粒子

其实对应的就是正负电子。

CPT 定理


