
（官方QFT）旋量场和矢量场的量子化
#Quantum_Field_Theory

Classical Majorana Theory
之前我们的 KG 场只有一个变量，现在考虑多个变量的情形。实际上 KC 场也可以被写

成有多个变量的形式，令 ϕ1 = phi,ϕa =
1

m
∂ a−2ϕ，那么场方程可以写成：

(C μ∂μ + m)ϕ = 0

这些 C μ 当然是 4 个矩阵：

我们想找一下能写成这种形式的理论。首先，我们仍然希望 ϕ 的每个分量是厄米的，
其次，我们至少希望在 Mass Shell 上有单粒子态，所以对于 kμkμ = −m2 的 k，我们
都期待场方程有这样的解：

ϕ(x) = u exp(ik(x − a)) + u⋆ exp(−ik(x − a))

把场方程变换到动量空间：

(ikμC
μ + m)u = 0

希望在 Mass Shell 上 u 有非零解，意思是：

det(ikμC
μ + m) = 0, if kμk

μ = −m2

否则反之。通过对行列式约束的讨论可知，这样的理论至少需要 ϕ 有 4 个分量。下面
我们就研究最简单的 4 个分量的情形。此外，如果取 ϕ = Sϕ′，那么场方程变成：

(S−1C μS∂μ + m)ϕ′ = 0

所以如果 C μ 只是差一个相似变换的话，两个场方程描述的就是同一个理论了。



下面考虑最简单的符合上面的行列式约束的情形，这四个矩阵是：

场方程也可以写成分量形式：

4

∑
b=1

(C μ

ab
∂μ + mδab)ϕb(x) = 0

这样的场称为 Majorana 场。不难验证 C μ 满足如下反对易关系：

{C μ,C ν} = 2gμν1

由于偏导数算符是对易的，通过将场方程的两侧同时作用 (C ν∂ν − m)，注意到：

C νC μ∂ν∂μ =
1

2
(C νC μ + C μC ν)∂μ∂μ

可得到方程：

(∂ 2 − m2)ϕ = 0

这说明 Majorana 场的每一个分量都满足 KG 方程。下面考虑 Majorana 场在洛伦兹变
换下是怎么变的：首先我们知道标量场是这样变的：

ϕ(x) → ϕ̄(x) = ϕ(Λ−1x)

那我们假设 Majorana 场有一点差别：

ϕ(x) → ϕ̄(x) = L(Λ)ϕ(Λ−1x)

Λ 是 Proper Orthogonal 洛伦兹变换群的群元，而 L(Λ) 是它的表示。作为表示首先得
是同态：

L(Λ′)L(Λ) = L(Λ′Λ)



考虑无穷小洛伦兹变换：

Λμ
ν = δμν + θμ μ

对于它的表示一定能写成这样的形式：

L(1 + θ) = 1 +
i

2
θμνS

μν

Sμν 是生成元（Lie 代数中的元素），你可以理解为（实际上就是） L 对 θμν 的导数。
L 矩阵组成的群和 P.O.洛伦兹变换群都是 6 维的，Sμν 就是 L 群中一条曲线在单位元
处的切矢量。因为 θμν 是反对称的，我们要求 Sμν 也是。所以我们只需要决定 6 个矩
阵的样子。
下面通过具体计算给出对这些 S 矩阵的要求。考虑：

这说明 L 矩阵应满足的要求是：

L−1(Λ)C μL(Λ) = Λμ
νC

ν

代入上面的无穷小 L 矩阵，将得到以下方程：

[C μ, iS ρσ] = gμρC σ − gμσC ρ

然而上面的方程无法定下唯一的 S，这是因为 [C μ,X] = 0 这个方程中 X 可以被设置
为单位矩阵的任意常数倍。施加 TrSμν = 0 的限制后，解得：

Sμν = −
i

4
[C μ,C ν]

不难验证洛伦兹群的 Lie 代数元满足如下对易关系：

[Sμν,S ρσ] = i[gμρS νσ − (μ ↔ ν)] − (ρ ↔ σ)

(C μ∂μ + m)ϕ̄(x) = C μ ∂

∂xμ
ϕ̄(x) + mϕ̄(x)

= C μ ∂

∂xμ
L(Λ)ϕ(Λ−1x) + mL(Λ)ϕ(Λ−1x)

= C μL(Λ)
∂

∂xμ
ϕ(Λ−1x) + mL(Λ)ϕ(Λ−1x)

= C μL(Λ)
∂yν

∂xμ

∂

∂xμ
ϕ(y) + mL(Λ)ϕ(y)

= C μL(Λ)(Λ−1)ν μ

∂

∂xμ
ϕ(y) + mL(Λ)ϕ(y)

= L(Λ)(L−1(Λ)C μL(Λ)(Λ−1)ν μ

∂

∂xμ
ϕ(y) + mϕ(y))



下面研究 Majorana 场的自旋。我们知道，洛伦兹变换作为一种（对称）操作，它一
定有对应的幺正算符（作为洛伦兹群在 Hibert 空间中的表示）。我们把这个算符记作
U(Λ)。我现在有一个态 |α⟩，把这个算符作用在上面，得到 |α′⟩ = U(Λ)|α⟩，标量场满
足：

⟨α′|S(Λx)|α′⟩ = ⟨α|S(x)|α⟩

对于 Majorana 场，有：

⟨α′|ϕ(Λx)|α′⟩ = L(Λ)⟨α|ϕ(x)|α⟩

也就是说：

U(Λ)−1ϕa(x)U(Λ) =
4

∑
b=1

Lab(Λ)ϕb(Λ−1x)

这里的 U(Λ) 必然也是 Λ 的表示，所以它可以写成：

U(1 + θ) = 1 +
i

2
θμνM

μν

这里的 M μν 的空间部分就是我们在一般的量子力学中说的（轨道）角动量。我们做如
下定义：

J1 = M 23,J2 = M 31,J3 = M 12;K1 = M 10,K2 = M 20,K3 = M 30

这里的 M 显然应该满足和前面的 S 一样的关系，从而得到 L,K 之间的对易子如下：

[Ji,Jj] = +iϵijkJk,  [Ji,Kj] = +ϵijkKk,  , [Ki,Kj] = −iϵijkJk

把前面的 U(Λ) 和 L(Λ) 都换成无穷小洛伦兹变换的形式，可给出：

[ϕa(x),M μν] =
1

i
(xμ∂ ν − xν∂μ)ϕa(x) +

4

∑
b=1

(Sμν)abϕb(x)

特别地，代入 M μν = M 12 = J3，很容易分别得到 ϕa(x) 和 J3 的对易子，然后我们构
造四个升降算符：



它们和 J3 的对易子为：

所以这里的 O1(t),O†
2(t) 是降算符，另外两个是升算符。

Majorana 场有所谓“左手旋量”和“右手旋量”表示，左手自旋表示定义为：

ψL = [ ]

通过前面 Majorana 场在洛伦兹变换下的变换规律，可以直接导出 ψL 的变换规律：

U(Λ)−1ψL(x)U(Λ) = LL(Λ)ψL(Λ−1x)

其中：

LL(1 + θ) = 1 +
i

2
θμνS

μν

L

容易计算得到：

右手旋量就是给左手旋量取共轭。

我们上面的 S i0 和 S ij 是洛伦兹群的生成元，但是 Boost 和空间转动之间是有耦合
的。通过构造：

Ni =
1

2
(Ji − iKi),  N †

i
=

1

2
(Ji + iKi)

我们有：

[Ni,Nj] = iϵijkNk, [N †
i ,N †

j ] = iϵijkN
†
k

, [Ni,N
†
j ] = 0

ϕ1 + iϕ2

ϕ3 + iϕ4



所以洛伦兹群的 Lie 代数被分为两个不交的部分。不难证明，在使用左手旋量表示

Majorana 场的时候，实际上这个 Lie 代数只被“激活”了一半：Ni = +
1

2
σi,N

†
i = 0。

同样，如果你使用右手旋量表示 Majorana 场，也是激活一半。一个洛伦兹群的不可

约表示可以使用两个数来计数：SL,SR ∈ {0,
1

2
, 1,

3

2
, ⋯}，Ni,N

†
i  的维度分别是

2SL + 1, 2SR + 1。基本上，我选择不同的 SL,SR 就会对应不同的场。这一点我们在
后面再详细讨论。

Quantization of Majorana Theory
要谈到如何把一个场量子化，我们实际上就是要找到满足因果关系的，场算符的对易
子。我们现在不知道使用对易子还是反对易子来量子化，所以记：

[A,B]σ = AB − σBA

再记：

[ϕa(x),ϕb(y)] = fab(x − y)

我们就要求这个 fab(x)，考虑其 Fourier 变换：

~
fab(k) = ∫ d4xfab(x) exp(−ikx)

下面先证明它是厄米的：

根据场方程，我们可以获得它的一些性质：由于

C μ
ac∂μϕc(x) + mϕa(x) = 0

~
f ⋆
ab(k) = ∫ d4xf ⋆

ab(x) exp(ikx)

= ∫ d4x[ϕa(x),ϕb(0)]†
σ exp(ikx)

= ∫ d4x[ϕ†
b
(0),ϕ†

a(x)]σ exp(ikx)

= ∫ d4x[ϕb(0),ϕa(x)]σ exp(ikx)

= ∫ d4x[ϕb(−x),ϕa(x)] exp(ikx)

= ∫ d4y[ϕb(y),ϕa(0)] exp(−iky)

=
~
fba(k)



考虑整个场方程与 ϕb 的对易：

做傅里叶变换：

(ikμC
μ + m1)

~
f(k) = 0

这里的 fk 是个矩阵。由于 det(ikμC μ) = (k2 + m2)2，那么显然 ~
f(k) 只能在 Mass

Shell 上不为 0。下面我们研究它在洛伦兹变换下是怎样变的，这样我们只要解出一个
点的 ~

f(k) 就知道其他点的了。为了研究它，我们需要从实空间开始，假设 fab(x) 是 c
数：

那么立刻可以证明：

~
fab(Λk) = Lac(Λ)Lbd(Λ)

~
fcd(k),  

~
f(Λk) = L(Λ)f(k)L(Λ)T

所以下面集中精力解出一点，kμ = (k0, 0, 0, 0)。此时，k 在纯空间转动下是不变的，
因此 fab(⋅) 也应当在空间转动下不变。代入 L = 1 + iθ1S

23 + iθ2S
31 + iθ3S

12，得到方
程：

θ1(S 23 ~
f +

~
fS 23T ) + θ2(S 31 ~

f +
~
fS 31T ) + θ3(S 12 ~

f +
~
fS 12T ) = 0

利用三个角度的任意性，解出 f 应满足的形式：

~
f(k0, 0, 0, 0) = 2πδ((k0)2 − m2)(ξ01 + ξ1C

0 + ξ2C
1C 2C 3 + ξ3C

0C 1C 2C 3)

ξi 是只依赖于 k0 符号的东西。我们这个猜测只是基于 ~
f 在洛伦兹变换下的行为，其余

的信息都还没用。使用 Majorana 场方程在动量空间中的形式，立刻得到：

ξ1 = iξ0sign(k0),  ξ3 = iξ2sign(k0)

再利用 ~
f 的厄米性质，解出 ξ⋆

0 = ξ0, ξ⋆
i = −ξi。这意味着 ξi 要么是 0，要么纯虚数。

那么定出 ξ2 = ξ3 = 0（一个纯虚另一个就要实），从而 ~
f 被确定至下面的形式：

0 = (C μ
ac∂μϕc(x) + mϕa(x))ϕb(0) − σϕb(0)(C μ

ac∂μϕc(x) + mϕa(x))

= C μ
ac∂μ[ϕc(x),ϕb(0)]σ + m[ϕa(x),ϕb(0)]σ

= C μ
ac∂μfcb(x) + mfab(x)

fab(x) = U(Λ)−1fab(x)U(Λ)

= U(Λ)−1[ϕa(x)ϕb(0) − σϕb(0)ϕa(x)]U(Λ)

= U −1ϕa(x)UU −1ϕb(0)U − σU −1ϕb(0)UU −1ϕa(x)U

= Lac(Λ)ϕc(Λ−1x)Lbdϕd(0) − σLbdϕb(0)Lacϕc(Λ−1x)

= Lac(Λ)Lbd(Λ)fcd(Λ−1x)



~
f(k0, 0, 0, 0) = 2πδ((k0)2 − m2)(θ(k0)α(1 + iC 0) + θ(−k0)β(1 − iC 0))

现在做一个 Boost 就可以把它打到 Mass Shell 上的其他位置：

~
f(p) = 2πδ(p2 + m2)

1

m
(αθ(p0) − βθ(−p0))( + im)C 0

做个傅里叶变换回实空间：

f(x) = (−
iα

m

∂I(x)

∂xμ
+

iβ

m

∂I(−x)

∂xμ
)C μC 0 + (iαI(x) − iβI(−x))C 0

我们要求 x2 > 0 的时候有 I(x) = 0 ⇒ I(x) = I(−x)，那么继续定出常数间的关系
α = β。所以：

~
f(k) =

α

m
(2π)δ(k2 + m2)sign(k0)( + im)C 0

利用 I(−x) = I ⋆(x)：

f(x) = −
2α

m

∂I2(x)

∂xμ
C μC 0 + 2αI2(x)C 0,  I2(x) = −Im(x)

注意：I2(x) 是奇函数， ∂I2(x)

∂xμ
 是偶函数，C 0 是反对称的，但是 C μC 0 是对称的，

所以 f T (−x) = +f(x) ⇒ fba(y − x) = +fab(x − y) 。在这种情况下，如果我仍然使用
对易子来量子化这个场，那么我们得到的是 [ϕa(x),ϕb(x)] = 0，这是一个经典理论。
为了得到非经典的结果，必须使用反对易子量子化，也就是指定
{ϕa(x),ϕb(x)} = fab(x − y)。

在四矢量 x 的时间维度 x0 很小的极限下，我们得到以下近似：

I2(x) → 0δ(x),
∂I2(x)

∂x0
→ +

1

2
δ(x),

∂I2(x)

∂xi
→ 0δ(x)

代入上面的 f(x) 得到 f(0, x) =
α

m
δ(x)1。，等时对易子：

{ϕa(x),ϕb(y)} =
α

m
δabδ(x − y)

现在我们仍然有常数 α 没指定，这其实反映了我们可以任意给场乘以一个常数。我们
选定 α = m。
下面要为这个场给出动量、能量，唯一的约束是和 Heisenberg 方程兼容，这给出：

H =
i

2
∫ d3xϕTC 0(C i∂i + m)ϕ,  P = −

i

2
∫ d3xπa∂iϕa

p

k



如同自由实标量场一样，Majorana 场也可以被显式解出来。最好的办法是求解场方程
在动量空间中的形式：

(i + m)
~
ϕ(k) = 0

这个方程有两个独立解（因为前面的矩阵的秩是 2，Null Space 是 2 维）：

(i + m)us(p) = 0

并且这两个解满足：

S3us(0) =
s

2
us(0)

（这就是为什么我们说 Majorana 场对应了自旋向上、向下的两类粒子的原因。这里
的求解结果可以使用 MMA 验证）不失一般性，设这里求出的两个解对应于 p0 > 0 的
情形，那么对场方程两边取复共轭：

(−i + m)u⋆
s(p) = 0

也就是说 p0 < 0 情形下的解是 u⋆
s(p)。此时 S3u

⋆
s(0) = −

s

2
u⋆
s(0)。因此，为了保证实

空间场算符是厄米的，动量空间的场算符只有下面这种写法：

~
ϕ(p) = 2πδ(p2 + m2)(θ(p0)∑

s

bs(p)us(p) + θ(−p0)∑
s

b†
s(−p)u⋆

s(−p))

此时实空间的场算符是：

ϕ(x) = ∑
s

∫ ~
dp(bs(p)us(p) exp(ipx) + b†

s(p)u⋆
s(p) exp(−ipx))

通过求解上面的方程，你可以定下 u+(0),u−(0)，我们这里选择如下的结果：

为了得到任意动量 p 时的结果，我们显然应当研究它们在洛伦兹变换下的行为。回忆
前面我们量子化 Majorana 场时对 C 矩阵在洛伦兹变换下行为的要求：

(Λ−1)μ νL
−1(Λ)C νL(Λ) = C μ

并且由 p′
μ = (Λ−1)ν μpν 得：

k

p

p



L−1(Λ)(ip′
νC

ν + m)L(Λ)u = (iL−1(Λ)(Λ−1)μ νpμC
νL(Λ) + m)u = (ipμC

μ + m)u

也就是说，如果 (ipμC μ + m)u = 0，那么立刻得到 (ip′
μC

μ + m)L(Λ)u = 0。（身处动
量空间的 u 和实空间的场 ϕ(x) 有相同的变换规则）那么可以获得所有的 u+(p),u−(p)

：

它有非常多性质：





类似自由标量场，这里的 bs, b†
s 也应当是升降算符。通过对场量 ϕ(x) 做一次傅里叶变

换可以将他们提取出来：

bs(p) = ∫ d3x exp(−ipx)u†
s(p)ϕ(x),  b†

s(p) = ∫ d3xuT
s (p)ϕ(x)

利用场量间的反对易子可以计算它们的反对易子，与自由标量场类似，只有一升一降
不为 0：

{bs(p), b†
s′(p′)} = 2ωp(2π)3δ(p − p′)δss′ ,  {bs(p), bs′(p′)} = 0,  {b†

s(p), b†
s′(p′)} = 0

将场量的解析形式代入 P μ：

P μ = ∑
s

∫ ~
dp

pμ

2
(b†

s(p)bs(p) − bs(p)b†
s(p)) := ∫ ~

dppμ(b†
s(p)bs(p)) + Const

Quantization of Dirac Theory
考虑两个独立的、同质量的 Majorana 场 ϕ, ζ，均满足场方程：

(C μ∂μ + m)ϕ = 0,  (C μ∂μ + m)ξ = 0

由于它们独立，对易子是：

{ϕa(t,x),ϕb(t,x)} = {ζa(t,x), ζb(t,x)} = δabδ(x − y),  {ϕ, ζ} = 0

令 ψa(x) =
1

√2
(ϕa(x) + iζa(x))，这个场被称为 Dirac 场。显然它满足和 Majorana 场

一样的场方程，立刻从两个 Majorana 场的对易子得到 Dirac 场的对易子：

两个 Majorana 场各有一套升降算符，做线性组合：

立刻给出 Dirac 场的解析表达式：



只有相同字母的算符、一升一降的反对易子不为 0：

下面给出 Dirac 场的能动量：显然，Dirac 场的能量应该是两个 Majorana 场能量的
和，因为这两个场并没有耦合。猜测其能量有如下形式：

O = ∫ d3xψ†iC 0(C i∂i + m)ψ

这个东西是可以分成两个 Majorana 场的能量求和加上交互项：

O = H ϕ + H ζ +
1

2
∫ d3x(ξTC 0(C i∂i + m)ϕ − ϕTC 0(C i∂i + m)ξ)

看看这个交互项：

这一项可以转换为边界项后消失。所以 O 就是能量。类似地可以得到动量。能量、动
量可以统一地写成：

P μ = −i∫ d3xψ†∂μψ

或者代入 Dirac 场的解析形式：

ζTC 0ϕ − ϕTC 0ζ = ζTa C
0
abϕb − ϕbC

0
baζa

= (C 0
ab + C 0

ba)ζaϕb = 0

ζTC 0C i∂iϕ − ϕTC 0C i∂iζ = ζa(C 0C i)ab∂iϕb − ϕb(C
0C i)ab∂iζa

= (C 0C i)ab(ζa∂iϕb + ∂iζaϕb)

= (C 0C i)ab∂i(ζaϕb)



P μ = ∑
s

∫ ~
dp pμ(b†

s(p)bs(p) + d†
s(p)ds(p)) + Const

与复标量场一样，Dirac 场有额外的对称性，考虑 Q = ∫ d3xψ†ψ，计算对易子：

[Q,ψ] = −ψ,  [Q,ψ†] = +ψ†

使用 B-H 公式得到：

exp(iαQ)ψ exp(−iαQ) = exp(−iα)ψ,   exp(iαQ)ψ† exp(−iαQ) = exp(+iα)ψ†

也就是说 Q 的操作相当于旋转了 ϕ, ζ，得到了一组新的 ϕ′, ζ ′。容易验证哈密顿量在这
个旋转下是不变的，因此 Q 是这种变换（U(1) 规范变换）下的守恒荷。

Quantization of EM Field
量子化电磁场之前，先把 Maxwell 方程写成张量形式：定义电磁 2-形式 Fμν 满足：

F00 = 0,  Fi0 = −F0i = Ei,  Fij = ϵijkBk

此时，Maxwell 方程写成：

∂νF
μν = J μ, ∂[μFνρ] = 0

首先考虑自由电磁场，此时取 J μ = 0。假定洛伦兹变换在 Hilbert 空间中对场算符的
作用效果是这样的：

U(Λ)−1F μν(x)U(Λ) = Λμ
ρΛν

σF
ρσ(Λ−1x)

在这个情况下，U(Λ) 是 Λ 的表示，这个基本要求是满足的。而且这种情况是最简单
的假设，直接假设这一堆算符服从张量变换律。只凭这些信息无法完全确定对易子，
所以我们需要更多信息，在电磁学中，我们知道电场是极矢量，在空间反演下反向，
而磁场是轴矢量，不反向。换言之，引入宇称变换对应的算符 U(P)，电、磁场的变换
规律是：

U(P)E(x)U(P) = −E(P−1x),U(P)B(x)U(P) = +B(P−1x)

此时，电荷、电流需要如下变换，才能不改变 Maxwell 方程：

U(P)−1ρ(x)U(P) = ρ(P−1x),  U(P)−1J(x)U(P) = −J(P−1x)

下面开始算对易子：

[F μν(x),F ρσ(y)]s = f μνρσ(x − y)



当然有一个符号 s 决定是对易子还是反对易子，这个我们仍然不知道。为了求出这个
对易子，需要找出关于它的一堆性质。首先根据 F μν(⋅) 本身的反对称性得到：

f μνρσ(x) = −f νμρσ(x) = −f μνσρ(x)

由厄米性：

f μνρσ⋆(x) = −f ρσμν(x)

从 Maxwell 方程可以获得：

∂μf
μνρσ(x) = ∂σf

μνρσ(x) = 0

由于 F μν(x) 在洛伦兹变换和空间反演下都是按照张量变换律变换的，那么对易子也
是：

以上所有约束都可以被放到动量空间中来：

在第 5 个方程两侧乘以 kα，并在对 α 求和的过程中使用方程 1，3，得到：

k2 ~
f(k) = 0

这意味着这个场只能在光锥上有解。把它的解写成下面的形式：

~
f(k) = (h+(k)θ(k0) + h−(k)θ(−k0))2πδ(k2)

这里的 f,h 都有上标 μνρσ。由于 h+,h− 也是反对称的，把这个反对称的效果单独写
出来：



那么现在 X (±) 只会和 {μν}, {ρσ} 这两个集合里面有什么有关，和里面东西的顺序无
关。由于 0 ∼ 3 的下标有 6 个组合方法，所以 X (±) 分别是 6 × 6 矩阵 X (±)

nn′ 。

同时由于 F μν 的厄米性导致 X±⋆
nn′ = X±

n′n
。现在我们要使用和之前类似的手段来确定

X±：考虑 (k0, 0, 0, b) 这一点，它在绕着 x3 轴的转动下保持不变， ~
f 当然也应该保持

不变。使用 Mathmatica 求解方程可将 X± 确定到下面的程度：

现在可以用一个洛伦兹变换把 (±b, 0, 0, b) 这个点推动到光锥上其他点，推动结果是：

利用 ~
f 在空间反演变换下的行为，直接推出 w = w′ = 0。从而得到更简单的 ~

f。除了
上面计算出的这一部分之外， ~

f(k) 还可以在 k = 0 处不为 0，这一部分在傅里叶变换
之后会变成关于 x 的多项式，记这一部分为 Qμνρσ(x)，且满足 ∂α∂αQ(x) = 0。通过对
上面的 ~

f(k) 做变换得到下面结果：



利用因果性的约束，立刻给出 Q(x) = 0,u = −u。进一步地：

从前面的表达式可以看出：

f ρσμν(−x) = −f μνρσ(x)

这直接导致：

[F ρσ(y),F μν(x)]s = −[F μν(x),F ρσ(y)]s

因此电磁场是使用反对易括号量子化的。

在 x0 → 0 时，依旧可以求出等时对易关系：

为了使得代入哈氏量之后，场方程（麦克斯韦方程）与 Heisenberg 方程一致，猜测哈
氏量：

H = η∫ d3x(E 2 + B2)

注意前面对易子里面还有一个未定常量 u，Heisenberg 方程给出 ηu = +
1

2
 ，一般而

言我们选取 u = 1, η =
1

2
。同理选择动量算符：

P = ∫ d3xE × B

最后我们可以把电磁场解出来，为了保证厄米性，假设电磁场有这样的展开：



F μν(x) = ∑
λ

∫ ~
dk(aλ(k)ϵμν⋆

λ
(k) exp(ikx) + a

†
λ
(k)ϵμν

λ
(k) exp(ikx))

这里的 ϵμν
λ

 一定满足动量空间中的 Maxwell 方程组，所以：

与 Majorana 场一样，这组方程有两个线性独立的解，以 λ = ±1 标记。

现在我们试图直接构造这两个解。这里的 k 可以认为是电磁波的波矢，找到两个与波
矢正交、且相互正交的是俩个 ua, ub 满足：

ua ⋅ ub = δab,u1 × u2 = k̂,u2 × k̂ = u1, k̂ × u1 = u2

选择：

eλ(k̂) =
1

√2
(u1 − λiu2)

eλ 会满足以下恒等式：

其中 α(−k̂) = α(k̂) 是一个依赖于 u1,u2 选择的实数相位。这些 eλ 可构造动量空间中
Maxwell 方程的解：

可以验证这样选择的 ϵμν
λ

 要满足恒等式：



可以重新写出 E,B 的表达式，求出升降算符间的对易关系，以及重新表达能量、动
量：

接下来看看电磁场的角动量。我们知道，角动量算符应该是洛伦兹群的生成元中的空

间转动部分，也就是 U(Λ) = exp( i

2
θμνM

μν),M μν =
1

2
ϵijkM

jk。利用电磁场在洛伦

兹变换下的行为可以给出 [F ρσ(x),M μν]，进一步得到：

计算前面的 aλ, a†
λ
 与 K̂ ⋅ J 的对易子得到：

[K̂ ⋅ J, aλ(k)] = −λaλ(k), [k̂ ⋅ J, a
†
λ(k)] = +λa

†
λ(k)

这说明 a†
λ
 确实是产生算符，产生了自旋为 λ 的光子，且光子的自旋是沿着波矢方向

的。

最后，利用 F μν(x) 的展开式，产生、湮灭算符的对易关系可计算电磁场的关联函数：



具体而言：

也可以写出编时传播子：


