
（官方QFT）精确传播子和重整化
#Quantum_Field_Theory

动量谱密度与空间重叠

我们现在引入两个函数：

~g|s⟩ = ⟨s|(2π)4δ(p − k)|s⟩, g|s⟩ = ⟨s| exp(ipx)|s⟩

分别用于询问态 s 在动量空间中的谱密度，以及这个态平移之后和自身有多大重叠。
这两个东西互为傅里叶变换，注意到：

∫ d4k
~g(k) exp(ikx)

(2π)4
= ⟨s|∫ d4kδ(p − k) exp(ikx)|s⟩ = ⟨s| exp(ipx)|s⟩

容易注意到，如果我只是令 |s⟩ → exp(iPa)|s⟩，也就是说如果我只是把态平移一下，
那么显然有 g′

s(x) = g(x), ~gs(k) = g(k)，也就是说我只是平移这个态是不会影响这两个
密度的。容易发现 gs 是在洛伦兹变换下不变的，那么 ~gs 必然也是洛伦兹变换下不变
的。也就是说在类空的区域，这两个谱密度必须为 0 了，因为洛伦兹变换可以把一个
类空的矢量变为任意一个类空的矢量。另外，(2π)4δ(P − k) 这个算符是半正定的，所
以 ~gs ≥ 0，那么 gs(x) = (gs(−x))⋆。我们可以借此定义所谓 b 态：gs(−x) = gs(x) 以
及 f 态：gs(−x) = −gs(x)。我们知道 |0⟩ 和 φ(0) 都是洛伦兹不变的，因此 ~gφ(0)|0⟩(k)

也是洛伦兹不变的，它只能依赖于 k2。那么我们猜测它必定有如下形式：

~gφ(0)|0⟩(k) = A(2π)4δ(k) + θ(k0)2πρ(−k2)

通过插入一组完备基底 I = |0⟩⟨0| + ∑
α

|α⟩⟨α|，容易发现 A = ⟨0|φ(0)|0⟩2。此外，我
们知道场会有单粒子态和多粒子态，那么我们可以推测：

ρ(s) = ♯δ(s − m2) + ρsre(s)

经过归一化计算知道 ♯ = ζ，在 on-shell scheme 下取 1。

下面看这些谱密度和传播子的关系：

⟨0|φ(x)φ(y)|0⟩ = ⟨0| exp(−iPx)φ(0) exp(iPx) exp(−iPy)φ(0) exp(iPy)|0⟩ = gφ(0)|0⟩(x − y)

我们上面说过 gs 在洛伦兹变换下不变，因此若 x, y 两个点类空分隔，那么

⟨0|φ(x)φ(y)|0⟩ = ⟨0|φ(y)φ(x)|0⟩



所以如果我要计算真正的精确传播子，我需要把 gφ(0)|0⟩(x) = gφ(a)|0⟩(x) 做出来。利用
我们之前得到的结果，对 ~gφ(0)|0⟩(k) 做个傅里叶变换：

gφ(a)|0⟩ = A + ∫
∞

0

dsρ(s)∫ d3k

(2π)32√→k2 + s

exp(−i√→k2 + sx0 + i→k→x)

使用留数定理可以得到这个结果：

再傅里叶变换一次立刻得到：

Δ̂(k) = iA(2π)4δ(k) + ∫
∞

0

dsρ(s)
1

k2 + s − iϵ

通过直接找出上面这个东西的虚部，容易看到

ImΔ̂(k) = A(2π)4δ(k) + πρ(−k2)

传播子的修正和顶点函数的修正

下面我们考虑 6 D 空间中 φ3 理论。为了不重不漏地计算对传播子的修正，我们先定
义所谓 1 PI 图（1 粒子不可约图），在移除这样的图中的所有外线后，图中没有桥，
也就是说我不能通过切断一条内线把图变成不相连的两部分。我们暂且承认在动量空
间，一张图的传播子是通过相乘得到的。以 Π(k2) 表示系统的自能，也就是只有两条
外线的 1 PI 图的和，那么粒子从一个点传播到另一个点的时候，可以直接走 KG 传播
子 Δ，也可以在路径上插入一个 1 PI 图，也就是 Δ(k)Π(k2)Δ(k)，当然，我们也可以
插入两个 1 PI 图，于是，我们有以下级数：

Δ̂(k) = Δ̂(1 + ΠΔ̂ + (ΠΔ̂)2 + ⋯) =
Δ̂(k)

1 − Π(k2)Δ̂(k)

代入 Δ̂ 的具体形式，即可求出：

Δ̂(k) =
1

k2 + m2 − iϵ − Π(k2)



所以只要搞定自能 Π，就能搞定精确传播子。前面我们知道：

Δ̂(k) = iA(2π)4δ(k) + ∫
∞

0

dsρ(s)
1

k2 + s − iϵ
, ρ(s) = δ(s − m2) + ρsre(s)

为了让这两个函数有相同的极点 k2 = −m2，我们要求 Π(m2) = 0，进一步地，为了保
证它们在极点处有相同的留数（取 on-shell scheme 归一化），要求 Π′(m2) = 0。你
可以认为让奇点相等是为了匹配两种传播子算出来的质量；让留数相等是为了匹配 ζ
，从而使得两个传播子的写法算出来的散射振幅、衰变速率等等可观测量一致。那么
下面我们可以试着确定 Π(k2)，我们只考虑最低阶的、有两个内点的情形。此时这张
图是：

I =
1

2
g2 ∫ id6l

(2π)6

1

(l2 + m2 − iϵ)((l + k)2 + m2 − iϵ)

在 l 很大时，这个积分是 ∫ id6l 
1

l4
，当然是发散的，但是我们可以通过重新指定一些

常数来避免发散，这个积分可以展开成：

I = ∫ id6l

(2π)6
( 1

l4
−

2ck

l5
+

(4π2 − 1)k2 − 2m2

l6
+ O(l7)), c := l̂ ⋅ k̂

这里面除了 ∫ id6l
2ck

l5
 这一项积分为 0 之外，其余都是发散的。我们可以任意地指定

这些发散项的值。我们知道积分的结果应当只与 k 有关，而 1

l4
−

2m2

l6
 中不含 k，所

以我们就把这一项指定为一个常数 b0，而 
(4π2 − 1)

l6
k2 被指定为 b1k

2。利用前面对 Π

的两个约束恰好可以把这两个常数定下来。具体的计算过程此处略去。

除了传播子可以修正之外，顶点函数也可以修正。考虑一个 3 度顶点，我们试图把所
有的三粒子相互作用都囊括到一个顶点函数中。最简单的情况是树图级别，此时贡献
g；更高一阶是一个圈向外伸出三条腿，这张图在动量空间里的写法是：

g3 ∫ −id6l

(2π)6
Δ̂(l)Δ̂(l + k2)Δ̂(l − k1)

由于这个积分在 l 很大时大概是 ∫ −id6l
1

l6
，所以这张图也是发散的，也需要进行重整

化。再往下看，如果我们想把四个粒子的相互作用全都吃到一个顶点函数 V4 中，那么
对于 φ3 理论来说树图级别是没有贡献的，我们首先得考虑“一个圈伸出去四条腿”的
图，这些图的贡献是：



g4 ∫ −
id6l

(2π)6
Δ̂(l)Δ̂(l + k2)Δ̂(l + k2 + k3)Δ̂(l − k1) + I2 + I3

这张图大概是 ∫ −id6l
1

l8
，因而它不是发散的，我们无需引入任何积分自由度。

我们下面给出一个判定给一个理论的顶点函数做修正会不会发散的方法。考虑 d 维空
间中的如下理论：

L = −
1

2
∂μφ∂μφ −

1

2
ω2

0φ
2 +

∞

∑
n=3

gn

n!
φn

设一张图中有 Vn 个 n 度点，那么图中总点数：

N0 = E +
∞

∑
n=3

Vn

总边数是度数的一半：

N1 =
1

2
(E +

∞

∑
n=3

nVn)

我们只考虑连通图对散射振幅等的贡献，因此 N3 = 1，从而图中的独立动量数目：

N2 = N1 − N0 + N3 = 1 −
E

2

∞

∑
n=3

n − 2

2
Vn

内部边的数量是总边数减去外点数：

I = N1 − E = −
E

2
+

∞

∑
n=3

n

2
Vn

由于我们的积分大概是 ∫ iddl1 ⋯ ddlN2

1

l2
i

⋯
1

l2
j

（有多少条内部边就有多少个 1

l2
），

所以我们可以使用如下的指标来判断积分是否发散：

♯SDoD = N2d − 2I = [gE] −
∞

∑
n=3

Vn[gn]

其中，[gn] = d − n( d

2
− 1)。如果一个理论中有 [gn] < 0 的情形，那么我可以通过无

限增加 Vn 来使得 ♯SDoD 为负，也就是让理论不可重整化。此时，由于我在计算高阶



修正的时候会遭遇越来越多的发散项，这会使得我需要引入越来越多的未定参数。我
们把这样的场称为不可重整化的。其他情形则是可重整化的。

既然我们已经得到了传播子的修正和顶点函数的修正，并且这些修正中都包含了无穷
张圈图，那么我们在计算散射振幅等可观测量的时候无需考虑圈图的贡献，只需考虑
由各个修正后的 n 度顶点带来的树图的贡献（并且树图中的每条边是精确传播子），
这种做法称为骨架展开。例如，计算 T (k1k2 → k′

1k
′
2) 时只需考虑一张 4 度顶点图，和

三张 3 度顶点+ 1 条内部边的图。

Schwinger-Dyson Equation
下面研究一个 N  个分量的场，以及 n 个下标-时空点 (a1,x1), ⋯ , (an,xn)。
考虑这个东西：

∫ D[φ] exp(iS[φ])φa1
(x1) ⋯φan(xn)

我们现在对场量做一个变换，并且不改变这里的积分元，使得 D[φ] = D[φ + η]（其实
这就相当于一般的积分测度 dx1 ⋯ dxn 的平移不变性），那么我们有：

∫ D[φ]{exp(iS[φ + η])(φa1
(x1) + ηa1

(x1)) ⋯ (φan(xn) + ηan(xn)) − exp(iS[φ]) ⋯} = 0

∫ D[φ]{(1 + i∫ ddx
δS

δφa(x)
ηa(x))(φ + η) ⋯ (φ + η) − φ⋯φ} = 0

ηa 是小量，我们只展开到它的一阶项。那么：

∫ D[φ]{
N

∑
a=1

∫ iWa(x)ηa(x)φa1
(x1) ⋯φan(xn) +

N

∑
j=1

φa1
⋯ ηaj ⋯φan}

其中 Wa(x) =
δS

δφa(x)
，我可以把所有的 η 全都拽到前面去：

N

∑
a=1

∫ ddxηa(x)∫ D[φ] exp(iS[φ])(iWa(x)φa1 ⋯φan +
n

∑
j=1

φa1 ⋯ δaajδ(x − xj) ⋯φan)

（注意：这里我们是把 φaj  用 δ 函数替换了，这一项已不存在），由 ηa 的任意性：

∫ D[φ] exp(iS[φ])(iWa(x)φa1
(x1) ⋯φan(xn) +

n

∑
j=1

φa1
⋯ δaajδ(x − xj) ⋯φan) = 0



我可以把上面这些东西作为分子，分母是 ∫ D[φ] exp(iS[φ])，那么我就得到了一个真
空期望值等于 0 的形式：

i⟨0|TWa(x)φa1
(x1) ⋯φan(xn)|0⟩ +

n

∑
j=1

⟨0|Tφa1
(x1) ⋯ δaajδ(x − xj) ⋯φan(xn)|0⟩ = 0

这就是 SD 方程。举个例子，若使用 φ3 理论代入，那么：

i(ω2
0 − ∂ 2

x)⟨0|Tφ(x)φ(y)|0⟩ −
ig

2
⟨0|φ2(x)φ(y)|0⟩ = δ(x − y)

若取 g = 0，我们就会看到：⟨0|Tφ(x)φ(y)|0⟩ 是 KG 场的格林函数。

补充：计算传播子修正和顶点函数修正的具体步骤

我们试着对自能做最低阶修正。考虑之前的大积分：

I =
1

2
g2 ∫ −

id6l

(2π)6

1

(l2 + m2 − iϵ)((l + k)2 + m2 − iϵ)

一个处理它的做法是做 Wick 转动，先把 l0 转到虚轴上（同时 k0 也会被转到虚轴
上），然后做变量替换 il0 = l6 = l6, ik0 = k6 = k6。转完之后可以把用来规避奇点的
−iϵ 去掉：

进一步处理的手段可能是 Feymann's Trick，也就是 1

AB
= ∫

1

0 dx
1

[xA + (1 − x)B]2
。

化简我们的分母：

上面的积分重写成：

I =
1

2
g2 ∫

1

0

dx∫ d6qE

(2π)6

1

(q2
E

+ D)2

I =
1

2
g2 ∫ d5l

(2π)5
∫

−∞

l6=+∞

−
dl6
2π

1

(l2
E

+ m2)((lE + kE)2 + m2)

=
1

2
g2 ∫ d6lE

(2π)6

1

(l2
E

+ m2)((lE + k)2 + m2)

x((lE + kE)2 + m2) + (1 − x)(l2E + m2)

= (l2E + 2xlE ⋅ kE) + (xk2
E + m2)

= (lE + xkE)2 + (xk2
E − x2k2

E + m2)

= q2
E + D



先考虑内层，可以换到球坐标系：

∫
Q

0

π3q5dq

(q2 + D)2
= π3 (D ln(

D

D + Q2
) +

2DQ2 + Q4

2 (D + Q2)
)

在 Q2 ≫ 0 时，分析这个东西是怎么发散的。这里面包括与 k 有关的发散和与 k 无关

的发散。Q2 很大的时候，对数项大概是 D lnD − D lnQ2 −
D2

Q2
，所以这里有一项

D lnQ2，是 k2 乘以一个发散的东西；另外一边是 D
2

+
Q2

2
，这里有一项与 k 无关的

发散。我们有两个积分自由度，我们指定：

I =
1

2

π3

(2π)6
∫

1

0

(D lnD + c1 + c2k
2)dx

这里我们把 
D

2
 吃到正比于 k2 的部分中了，这样是 D(

1

2
− lnQ2) 发散。我留着它

在外面也只是会起到平移常数的效果，不如吃掉。

注意：这里需要用到费曼积分技巧：

1

A1 ⋯An

= (n − 1)!∫
1

0

dx1 ⋯∫
1

0

dxnδ(
n

∑
i=1

xi − 1) 1

(x1A1 + ⋯xnAn)n

补充：量子场论中的量纲分析

考虑 ℏ = c = 1 的单位制，路径积分里面有一个 exp(iS)，所以作用量 S = ∫ ddxL  是
无量纲量。考虑如下理论：

L = −
1

2
(∂μφ)(∂μφ) −

gn

n!
φn

ddx 的质量量纲是 −d，那么 L  的质量量纲是 [L] = d。那么 [∂μφ] =
d

2
，[φ] =

d

2
− 1

，那么：

[gn] = d − [φn] = d − n[φ] = d − n(
d

2
− 1)

Renormalization
在前面其实我们已经试着分析过重整化。我们计算 Π(−k2) 的最低阶修正时，采用了
考虑一个截断的积分的发散情况，然后认为每一个发散的部分对应一个自由度，我们



利用重整化条件定下了这些自由度。下面我们给出一个物理意义更明确的做法。作为
例子，考虑 6 D 中 ϕ3 理论，拉格朗日量是这样的：

L = −
1

2
(∂μϕ0)2 −

1

2
m2

0ϕ
2
0 +

g0

3!
ϕ3

0

这里面的 ϕ0,m0, g0 都是无穷大的量，它们和实验中测得的真实结果通过以下方式联
系：

ϕ0 = Z
1
2

ϕ
ϕ,m2

0Zϕ = Zmm
2, g0Z

3
2

ϕ
= Zgg

代入后得到：

L = −
1

2
Zϕ(∂μϕ)2 −

1

2
Zmm

2ϕ2 −
Zgg

3!
ϕ3

下面将每个 Z 写成 1 + δ 的形式，并且认为多出来的部分是（发散的）修正，令
Zϕ → 1 + δϕ,Zm → 1 + δm,Zg → 1 + δg，那么显然拉氏量要分出两部分，一部分是与
实验中观测到的有限常数相关的，但是使用费曼图计算这一部分将获得无穷大修正；
另一部分就是无穷大的，用于抵消前面的无穷大：

L = (−
1

2
(∂μϕ)2 −

1

2
m2ϕ2 +

g

3!
ϕ3) + (−

1

2
δϕ(∂μϕ)2 −

1

2
δmm

2ϕ2 +
δgg

3!
ϕ3)

为了确定三个 δ，需要三个条件。我们把 1

2
(∂μϕ)2 −

1

2
m2ϕ2 作为没有微扰的拉氏量

（因为只有这样我们才是计算一堆东西在高斯分布下的期望， Wick 定理才起效，费
曼图才用的出来），那么后面的反项要产生额外的两度顶点和三度顶点。注意这里有
一个和 ∂μϕ 有关的二度点，在用 Wick 定理算带有两个外点的费曼图的时候（1PI 图，
用于自能修正），求导会被提到缩并前面，所以你会在实空间得到

∫ d4y∂μ,yΔ(x1 − y)∂μ
y Δ(x2 − y)

这样的项，变换到动量空间的时候导数变成 i2kμk
μ = −k2。

那么现在首先看对自能的修正，我们只修正一圈图，所以只考虑一张额外的费曼图：
在两个外点之间插入一个反项顶点。这张图的效果是 − 1

2 δϕ(−k2) − 1
2 δmm

2，所以现
在的自能变成：

Πrenorm(k2) = Π1−loop(k2) +
1

2
δϕk

2 −
1

2
δmm

2



所以上面的过程其实是这样的：我们计算了 Π1−loop(k2) 在 [0,Q] 的积分，需要考虑
Q → ∞ 的情况，所以我们首先把这个积分在大 Q 处展开，比常数项阶还要小的，
Q−α(α > 0) 全部扔掉，常数项保留，发散的部分对应积分中的自由度，需要根据重整
化条件确定这些自由度。顶点函数也是类似的。

μ -Scheme Renomalization
前面的 On-Shell Scheme 中，我们是对比了精确传播子与传播子的谱密度形式，确保
传播子的极点和极点处的留数不变，从而确定了积分中的自由度。但是可以有其他的
重整化 Scheme，例如所谓 μ -Scheme：

Π(μ2) = Π′(μ2) = 0

V3(k1, k2, k3) = 0 if k2
1 + k2

2 + k2
3 = μ2

我们拿这个算点东西。对于传播子的修正：考虑拉氏量：

L = −
1

2
∂μϕ∂μϕ −

1

2
ω2

0ϕ
2 +

1

6
gϕ3

这里没有用 m 这个符号是因为我们把（实验测得的）质量定义为传播子的极点位置。
单圈图的计算结果是：

Π(k2) =
1

2

g2

(2π)6
∫

1

0

(D lnD + c1 + c2k
2)dx

其中 D = x(1 − x)k2 + ω2
0。编写以下代码进行计算：



求解结果：（取 mu2=w0sq  就回到 On-shell Scheme）

做完这些之后，我们可以讲讲场的反常维度。根据我们之前对重整化的理解，我改变
了 μ -Scheme 中的 μ，相当于动了 δ，那么我的物理场 ϕ 也要发生变化。现在假定
μ → μ(1 + ϵ) 时场的变化是：

ϕ(x)|μ(1+ϵ) = (1 − γϕϵ)ϕ(x)|μ

由于传播子是正比于场平方的，那么传播子的倒数的变换规则：

Δ̂
−1(k2)|μ(1+ϵ) = (1 + 2γϕϵ)Δ̂

−1(k2)|μ

在 μ ≫ ω0 时，显然有：

Δ̂
−1(μ2)|μ = μ2

那么：

Δ̂
−1(μ2(1 + 2ϵ))|μ(1+ϵ) = μ2(1 + 2ϵ)

从而：

(1 + 2γϕϵ)Δ̂
−1(μ2(1 + 2ϵ))|μ = μ2(1 + 2ϵ)

由此得到：

Δ̂
−1(μ2(1 + 2ϵ))

Δ̂−1(μ2)
= 1 + 2(1 − γϕ)ϵ

这是一个微分方程，记 f(x) := Δ̂−1(μ2)，那么：



xf ′(x)

f(x)
= 1 − γϕ

解出的结果是：

Δ̂
−1(k2) ∝

1

k2−2γϕ

那么我们已经有了随着重整化 Scheme“跑动”的场量，不难想象我们有“跑动”的质量 ω0

和“跑动“的耦合常数 g。接下来我们详细推导关于它们的方程：考虑能标发生变化
μ → μ′ = μ(1 + ϵ)，此时场量按上文所述方式变化，除此之外，耦合常数和质量发生
变化：

g|μ(1+ϵ) = g|μ + βgϵ,  ω0|μ(1+ϵ) = ω0|μ + ω0γmϵ

而 Δ̂ 是依赖于 k,μ, g,ω0 的函数，这里面 μ, g,ω0 在变化能标的时候都要变，不难求出
其全微分：

Δ̂
−1(k;μ(1 + ϵ), g|μ(1+ϵ),ω0|μ(1+ϵ)) = (1 + ϵ(( ∂

∂ lnμ
) + βg

∂

∂g
+ γm

∂

∂ lnω0
))Δ̂

−1(k;μ, g

与之前得到的 Δ̂−1(k2)|μ(1+ϵ) = (1 + 2γϕϵ)Δ̂−1(k2)|μ 联立立刻得到：

( ∂

∂ lnμ
+ βg

∂

∂g
+ γm

∂

∂ lnω0
− 2γϕ)Δ̂

−1(k2) = 0

对顶点函数的推导也是类似的，结果是：

( ∂

∂ lnμ
+ βg

∂

∂g
+ γm

∂

∂ lnω0
− 3γϕ)V3(k1, k2, k3) = 0

这是所谓 Callan-Symanzik 方程/重整化群方程。


