
（官方QFT）路径积分和费曼图
#Quantum_Field_Theory

Path Integral of Particles
由于我们要计算系统从一个多粒子态到另一个多粒子态的概率，根据 LSZ Reduction
Formula，我们需要计算系统的真空基态值 ⟨0|ϕ(x1) ⋯ϕ(xn)|0⟩。为了简化问题起见，
我们首先在粒子系统上研究如何计算这个值，也就是计算 ⟨0|X(t1) ⋯X(tn)|0⟩。
现在，让我们考虑我们的时间可以取复数。取两个态 |1⟩, |2⟩，它们随着时间的演化由
时间演化算符给出：

exp(−iHΔt)|1⟩

在 Im(Δt) → −∞ 时，有：

exp(−iHΔt)|2⟩ → C2 exp(−iE0Δt)|0⟩

⟨1| exp(−iHΔt) → C ⋆
1 exp(−iE0Δt)⟨0|

所以，引入两个时间点 t+, t−，使得 Im(t+) → +∞, Im(t−) → −∞，上面的真空期望
值可以写成：

注意到在 Im(Δt) < 0 时，exp(−iHΔt) 一定收敛，所以我们可以说 ⟨0|Q(t1)Q(t2)|0⟩

在 Im(t1 − t2) < 0 时是解析的。现在我们先考虑分子上积分的计算，我们在其中插入
四个完备性关系，得到下面这个东西：

同理，通过向分母插入四个完备性关系，可以得到分母等于下式：

∫ dq ′dq ′′dq(t1)dq(t2)⟨1|q ′⟩⟨q ′| ⋅ |q(t1)⟩⟨q(t1)| ⋅ |q(t2)⟩⟨q(t2)| ⋅ |q ′′⟩⟨q ′′|2⟩

⟨0|Q(t1)Q(t2)|0⟩

=
⟨1| exp(−iHt+)Q(t1)Q(t2) exp(+iHt−)|2⟩

⟨1| exp(−iHt+) exp(+iHt−)|2⟩

=
⟨1| exp(−iH(t+ − t1))Q(0) exp(−iH(t1 − t2))Q(0) exp(−iH(t2 − t−))|2⟩

⟨1| exp(−iH(t+ − t1)) exp(−iH(t1 − t2)) exp(−iH(t2 − t−))|2⟩

∫ dq ′dq ′′dq(t1)dq(t2)⟨1|q ′⟩⟨q ′| exp(−iH(t+ − t1))Q(0)|q(t1)⟩⟨q(t1)| exp(−iH(t1 − t2))Q(0)|q

= ∫ dq ′dq ′′dq(t1)dq(t2)q(t1)q(t2)⟨1|q ′⟩⟨q ′| ⋅ |q(t1)⟩⟨q(t1)| ⋅ |q(t2)⟩⟨q(t2)| ⋅ |q ′′⟩⟨q ′′|2⟩



所以现在重要的是算出其中“一截一截”的东西，也就是 ⟨q ′′| exp(−iHδt)|q ′⟩ 这个东西
是什么。通过路径积分法，很容易知道这个跃迁振幅是：

⟨q ′′| exp(−iHδt)|q ′⟩ = ∫
q(t)=q ′′

q(0)=q ′

Dq exp(i∫ Ldt)

Dq 意味着所有的路径贡献的跃迁振幅都需要求和。注意分子分母上 ⟨1|q ′⟩ 和 ⟨q ′′|2⟩ 这
两个内积都是 c 数，可以消去，所以我们实际上要计算的是下面这个东西：

⟨0|Q(t1)Q(t2)|0⟩ =
∫ (Dq)q(t1)q(t2) exp (−i ∫

C
Ldt)

∫ (Dq) exp (−i ∫
C
Ldt)

注意对时间的积分是从 t− 到 t+，也就是无穷远的过去到无穷远的未来。为了保证这
里面的每一段的跃迁振幅都是解析的，我们要求随着曲线 C，t 的虚部应该逐渐减
小。另外，如果两个真空态之间夹的是编时乘积，那么积分曲线 C 的时间在复平面上
应该是从左上向右下的。

下面我们给出具体的计算方法。以谐振子（一维时空 KG 场）为例，拉氏量：

L =
1

2
φ̇2 −

1

2
ω2

0φ
2

我们一般的做法是这样的：先把 t1, t2 取为纯虚数，然后再解析延拓到 t1, t2 是实数的
情况。做换元 τ = it，令 ϕ(τ) = φ(t) ，那么：

记：

SE = ∫
+∞

−∞
dτ ( 1

2
( dϕ

dτ
)

2

+
ω2

0

2
ϕ2)

那么 S = ∫ iLdt = −SE，所以在 t1, t2 为纯虚数的情况下，我们实际上要计算的是：

ΔE(τ1 − τ2) =
∫ Dϕ ϕ(τ1)ϕ(τ2) exp(−SE)

∫ Dϕ exp(−SE)

L =
1

2
(

dφ(t)

dt
)

2

−
1

2
ω2

0φ
2

=
1

2
(

dϕ(τ)

dt
)

2

−
1

2
ω2

0ϕ
2

= −
1

2
( dϕ(τ)

dτ
)

2

−
1

2
ω2

0ϕ
2



为了计算这个东西，最好的方法是换个基底。我们可以使用一条轨迹上的所有“控制
点”来表示一条路径，这样的路径微元是 Dϕ，我们也可以使用一条路径 ϕ(τ) 的傅里叶

变换 ~
ϕ(ν)（我们令 ϕ(τ) = ∫ +∞

−∞

dν

2π
~
ϕ(ν) exp(−iντ)）来表示一条路径（因为一条傅里

叶谱是唯一的对应一条路径的），所以我们要求的东西可以写成：

∫ D
~
ϕ ϕ(τ1)ϕ(τ2) exp(−SE)

∫ D
~
ϕ exp(−SE)

简便起见，我们先计算 E[
~
ϕ(ν1)

~
ϕ(ν2)]（通过 wick 转动，上面的问题已经被转化成为统

计场论问题），不难看出 SE 可写为：

SE = ∫
∞

−∞

dν

4π
∥

~
ϕ(ν)∥2(ν 2 + ω2

0)

这样做意味着我们将系统拆分成了一系列独立的频率，频率 ν 出现的概率服从高斯分
布，为：

p(
~
ϕ(ν)) =

1

Z(ν)
exp(−

1

4π
(ν 2 + ω2

0)∥
~
ϕ(ν)∥2)

我们无需在乎这个 Z(ν) 是多少，因为它会被消掉。上面的积分可以被离散为：

E[
~
ϕ(ν1)

~
ϕ(ν2)] =

∫ ~
ϕ(ν1)p(

~
ϕ(ν1))d

~
ϕ(ν1) ∫ ϕ(~ν2)p(

~
ϕ(ν2))d

~
ϕ(ν2) ∫ p(

~
ϕ(ν3))d

~
ϕ(ν3) ⋯

∫ p(
~
ϕ(ν1))d

~
ϕ(ν1) ∫ p(

~
ϕ(ν2))d

~
ϕ(ν2) ∫ p(

~
ϕ(ν3))d

~
ϕ(ν3) ⋯

我能把不同的频率拆开是因为这些频率是互相独立的。显然 Z(ν) 根本不是积分变元，
所以分子、分母上的各个 Z(ν) 可以全都消去。那么我们只剩下下面的东西：

E[
~
ϕ(ν1)

~
ϕ(ν2)] =

∫ ~
ϕ(ν1)p(

~
ϕ(ν1))d

~
ϕ(ν1) ∫ ~

ϕ(ν2)p(
~
ϕ(ν2))d

~
ϕ(ν2)

∫ p(
~
ϕ(ν1))d

~
ϕ(ν1) ∫ p(

~
ϕ(ν2))d

~
ϕ(ν2)

如果 ν1 ≠ ν2，且 ν1 ≠ −ν2，则这个积分显然得到 0（两个频率是完全独立的）；若
ν1 = ν2，那么令 ~

ϕ(ν1) = x + iy 容易看出 E[
~
ϕ(ν1)

~
ϕ(ν1)] = 0；若 ν1 = −ν2，那么我们

实际上计算的是：

E[
~
ϕ(ν1)

~
ϕ(−ν1)] =

∫ ∥
~
ϕ(ν1)∥2 exp(−

1

2π
(ν 2

1 + ω2
0)∥

~
ϕ(ν1)∥2)d

~
ϕ(ν1)

∫ exp(−
1

2π
(ν 2

1 + ω2
0)∥

~
ϕ(ν1)∥2)d

~
ϕ(ν1)

分子、分母上都是高斯积分，计算结果是：



E[
~
ϕ(ν1)

~
ϕ(−ν1)] =

2π

(ν 2
1 + ω2

0)

我们这个是离散后的结果，在连续的情况下，我们可以说给定 ~
ϕ(ν1) ，它与 ~

ϕ(ν2) 在

单位频率宽度 dν 内的关联强度是 2π

(ν 2
1 + ω2

0)
，所以在连续的情况下，上面的结果应当

写成：

E[
~
ϕ(ν1)

~
ϕ(ν2)] =

2π

(ν 2
1 + ω2

0)
δ(ν1 + ν2)

接下来我们可以得到原始的积分结果：

对这个结果做解析延拓：

从上文的推导过程中，我们还可以获得结论：若 ⟨0|T ⋅ |0⟩ 中的算符有奇数个，那么计
算结果一定为 0。在有偶数个算符的情况下，这些算符一定能两两缩并，我们有 Wick
定理：

⟨T |φ(t1)φ(t2) ⋯φ(t2n)|⟩ = ∑
all possible pairings

Δ(ti1
− ti2

) ⋯ Δ(ti2n−1
− ti2n

)

也就是说，我们只需算出最基本的两算符传播子即可计算其他所有的传播子。不难想
象，这样的处理方法可以泛化到场论问题中（你可把场视作有无穷自由度的粒子），
也就是说：

⟨0|Tφ(x)φ(y)|0⟩ =
∫ Dφ(x)φ(y) exp(iS)

∫ D exp(iS)

⟨0|ϕ(τ1)ϕ(τ2)|0⟩ = E(∫
+∞

−∞

dν1

2π
~
ϕ(ν1) exp(−iν1τ1)∫

+∞

−∞

dν2

2π
~
ϕ(ν2) exp(−iν2τ2))

=
1

2π
∫

+∞

−∞

1

ν 2
1 + ω2

0

exp(−iν1(τ1 − τ2))

=
1

2ω0
exp(−ω0|τ1 − τ2|)

t1 > t2 时，利用之前的换元 τ = it，τ1 − τ2 = i(t1 − t2)，所以编时传播子是
exp(−ω0(τ1 − τ2)) → exp(−iω0(t1 − t2))

同理，在 t1 < t2 时，exp(−ω0(τ2 − τ1)) → exp(−iω0(t2 − t1))

所以，有真空态夹着编时乘积的期望：

Δ(t1 − t2) = ⟨0|Tφ(t1)φ(t2)|0⟩ = exp(−iω0|t1 − t2|)



其中 S = ∫ d4xL。

Path Integral of Fields
根据 Wick 定理，我们仍然可以只考虑最简单的场：KG 场。我们知道它的拉氏量是：

L =
1

2
φ̇2 −

3

∑
i=1

1

2
(∂iφ)2 −

1

2
m2φ2

同样令 τ = it，并令 ϕ(τ) = φ(t)， 那么我们得到欧氏时空中的拉氏量：

LE = −
4

∑
μ=1

1

2
(∂μϕ)2 −

1

2
m2ϕ2

经过 Wick 转动后，我们的传播子写为：

ΔE(x − y) = ⟨0|ϕ(x)ϕ(y)|0⟩ =
∫ ϕ(x)ϕ(y) exp(−SE)Dϕ

∫ exp(−SE)Dϕ

采用与之前同样的写法，令：

ϕ(x) = ∫ d4kE

(2π)4

~
ϕ(kE) exp(ikE ⋅ xE)

其中 xE = [x1,x2,x3,x4], kE = [k1, k2, k3, k4]，x4 = ix0, k4 = ik0。我们先计算（类比
之前的“各频率独立的正态分布”这一表述，很容易直接得到答案）：

E[
~
ϕ(k)

~
ϕ(l)] =

(2π)4δ(k + l)

k2 + m2

再计算：

E[ϕ(x)ϕ(y)] = ∫ d4kE

(2π)4

exp(ikE(xE − yE))

k2
E

+ m2

我们接下来要做的就是解析延拓，这里直接把变量替换回去就可以得到正确的答案，
直接使用之前的关系 k4 = ik0,x4 = ix0，直接得到：

⟨0|Tϕ(x)ϕ(y)|0⟩ = ∫ d3k

(2π)3
exp(i→k ⋅ (→x − →y))∫

+∞

−∞
−
idk0

(2π)

exp(ik4(x4 − y4))

ω2
→k

− (k0)2

= ∫
−id4k

(2π)4

exp(ik(x − y))

k2 + m2 − iϵ



其中这里引入一个 ϵ 的目的是防止奇点出现在积分路径上。

下面我们考虑求非线性场的编时乘积期望。考虑下面的拉氏量：

L =
1

2
∂μφ∂μφ −

1

2
m2φ2 + Yφ +

1

6
gφ3

这个东西没有解析解，我们只能将后两项当作微扰计算。我们考虑在做完 Wick 转动
后，令：

L
1
E = Y ϕ +

1

6
gϕ3,  L 0

E =
1

2
(∂μϕ)2 +

1

2
mϕ2

考虑计算下面的东西：

E[ϕ(x1)ϕ(x2) ⋯ϕ(xN)] =
∫ Dϕ ϕ(x1)ϕ(x2) ⋯ϕ(xN) exp(− ∫ d4xEL

0
E + ∫ d4xEL

1
E)

∫ Dϕ exp(− ∫ d4xEL
0
E

+ ∫ d4xEL
1
E

)

引入记号：

E0[A] =
∫ Dϕ A exp(− ∫ d4xEL

0
E)

∫ Dϕ exp(− ∫ d4xeL
0
E)

那么上面的期望可以写为：

E[ϕ(x1) ⋯ϕ(xN)] =
E0[ϕ(x1) ⋯ϕ(xN) exp(∫ d4xEL

1
E)]

E0[exp(∫ d4xEL
1
E

)]

有趣的是，这个期望的分子和分母都有图表示。我们先看（相对更简单的）分母（将
其记作 G），利用 g,Y ≪ 1 的事实将其展开：

G = E0 (
∞

∑
ng=0

∞

∑
nY =0

1

ng!nY !
(∫ 1

6
gϕ3(x)d4xE)

ng

(∫ Y ϕ(x)d4xE)
nY

) = ∑∑Gng,nY

由于高斯分布的概率密度对 ϕ(x) 是偶函数，所以这里如果某一项出现了 ϕ(x) 的奇数
次方的话就要得到 0 了，所以我们不考虑 3ng + nY = odd 的这些项。此外，对于空
图，我们定义它的值为 1。所以我们有：

G00 = 1,G10 = 0,G01 = 0

G20 =
1

2!
( g

3!
)

2
∫ d4xEd4yEϕ(x)ϕ(x)ϕ(x)ϕ(y)ϕ(y)ϕ(y)



根据 Wick 定理，我们应该计算这里所有的缩并，显然有两种方案：x − y 缩并和
x − x, y − y 缩并，缩并计算的结果是：

∫ d4xEd4yE(3!Δ3(x − y) + 3 × 3Δ(x − y)Δ(x − x)Δ(y − y))

除以前面带着的系数 1

2!
( g

3!
)

2
 之后，两项前面的系数分别是 1

2!3!
 和 1

2!2!2!
。图里

面，每一个 ϕ3 项都对应于一个 3 度点，缩并两个算符意味着连接 3 度点的两条边。
这两个系数称为图的对称性因子，是与你绘制的图拓扑等价的图的数目。

再看分子，分子上有形如这样的项：

GN(x1, ⋯ ,xN) = E0 (ϕ(x1) ⋯ϕ(xN) exp(∫ d4yE (
1

6
gϕ3(y) + Y ϕ(y)))) = ∑

ng,nY

GN
ng,ny

GN
ng,ny

= E0 (ϕ(x1) ⋯ϕ(xN)
1

ng!
(⋯)ng

1

nY !
(⋯)nY)

这里的每一项也可以类似地用一张图表示，但是我们在这里引入了可区分的外点
ϕ(x1), ⋯ ,ϕ(xN)。这些点只能和一个算符缩并，所以显然它们是 1 度点。

上面对于真空基态值的计算可做进一步化简。所有的图都可以被拆成各种连通图，我
们将这些连通图记为 C1,C2, ⋯ ,Cn。设分母上的所有 Feymann 图中，这些图分别有
n1,n2, ⋯ ,nn 张，那么分母上的求和重新写为：

G =
∞

∑
n1=0

∞

∑
n2=0

⋯
C

n1

1 C
n2

2 ⋯

n1!
= exp(C1 + C2 + ⋯) = exp(∑  all of the connected parts)

分子上的每张图也可以被分解为含有外点的部分和不含外点的部分，设 C (N)
j  是含有

N  个外点的第 j 种图，那么：

G(N)(x1, ⋯ ,xN) = ∑
j

C
(N)
j ∑

n1,n2,⋯

C n1

1 C n2

2 ⋯

n1!n2! ⋯
= ∑

j

C
(N)
j exp(C1 + C2 + ⋯)

所以我们发现，分子和分母上的真空图（不含外点的部分）是可以消去的。在计算上
面的真空基态值的时候，我们只需要列出所有含有外点的图。

Symmetry Factor, UV Divergence
通过费曼图，我们可以极其方便地计算真空基态值。写出真空基态值的微扰展开的问
题转化为给定 Next 个 1 度外点、Ni 个 i 度内点，问这样的东西能组成多少图的问



题。首先，一个图的所有点的度数之和必须为偶数，度数之和为奇数的情况不可能成
图，也就对应了我们上面给出的得 0 的那些项。首先需要定义什么样的两张图是拓扑
等价的：我们这样定义一张费曼图：每个内点有属性：1）标签 1, 2, ⋯ ,n，以及 2）
与之相连的外点集合；每个边有属性：边标签 A,B,C, ⋯，费曼图是用 边(点,点) 这样
的集合来指定的。你有两种操作生成新的图：交换两个点的标签、交换两个边的标
签。你可以在每次生成新图的过程中多次、混合使用这两个操作，一个合法的新图是
指操作后：

关于对称性因子，有结论：

S(C) = F(C)(∏
i<j

Cij!)(2
Cii
2 ( Cii

2
)!)

其中 F(C) 是交换两个点的标签而不改变邻接矩阵的操作数目。

考虑 φ3 理论中的 E[ϕ(x)]，它的最低阶展开是：

E[ϕ(x)] = ∫ d4yEΔ(x − y)(Y − Δ(y − y))

其中：

Δ(y − y) = ∫ d4kE

(2π)4

1

k2
E

+ m2

是发散的。为了处理这个问题，我们直接把上面的积分和拉氏量中的参数 Y  全部指定
为 0。这样，我们可以直接忽略 1 度图和蝌蚪图。

Scatter Amplitude and its Derivatives
下面利用 LSZ Reduction 计算散射振幅，我们在所谓 On-Shell Scheme（ζ = 1）下处
理。考虑射入两个粒子，射出两个粒子的情况，此时 LSZ Reduction 告诉我们要计
算：

某一个标签的内点连接的外点集合不变

集合中所有的 边(点,点) 不变

i2+2 ∫ d4x1d4x2d4x′
1d4x′

2 exp(ik1x1) exp(ik2x2) exp(−ik′
1x1) exp(−ik2x2)

(m2 − ∂ 2
1 )(m2 − ∂ 2

2 )(m2 − ∂ 2
1′)(m2 − ∂ 2

2′)⟨0|Tϕ(x1)ϕ(x2)ϕ(x′
1)ϕ(x′

2)|0⟩



先计算：

(m2 − ∂ 2
x)Δ(x − y) = −iδ(x − y)

把前面对 x 的积分向里面迁移，再计算：

∫ id4x exp(ikx)(m2 − ∂ 2
x)Δ(x − y) = exp(iky)

计算后，直接得到 2 → 2 的三张图的总贡献是：

i(2π)4δ(k1 + k2 − k′
1 − k′

2)Tk1k2→k′
1k

′
2

其中：

Tk1k2→k′
1k

′
2

= ∑
Connected

( ∏
内部边

1

(内部边上流过的动量)2 + m2 − iϵ
)(∏
内点

耦合系数)

如果有的内部边上的流量无法确定，则需要在上式中加入积分 ∫ −
idl

(2π)4
，其中 l 为未

确定的动量。这是标量场理论在动量空间的费曼规则。

下面考虑计算散射过程中的可观测量。设入射粒子的波函数为 fi(p)，局限在 ki 附
近；出射粒子的波函数为 f ′

i(p)，局限在 k′
i 附近。现在假设任何一部分 ki 的和不等于

任何一部分 k′
j 的和。之前我们推出了如下结果：

我们现在为入态、出态构建波函数，我们希望这个波函数是全对称的，所以我们做个
对称化：

ψin(p1, ⋯ pn) =
1

√n!
∑
Q

f(pQ1
) ⋯ f(pQn

)

其中 Q 是全排列。所以有：



⟨in|in⟩ =
1

n!
∫ ~

dp|ψin|2

对于 Out 态也一样。注意：此时有关系：

∫ ~
dpψin(p1, ⋯ pn) = √n!∫ ~

dpf(pQ1
) ⋯ f(pQn

)

注意：这里和课堂上使用的归一化约定不一样，课堂上使用的约定是

∫ ~
dpψin(p1, ⋯ pn) = n!∫ ~

dpf(pQ1
) ⋯ f(pQn

)

我们首先求出一个 in 态衰变到不同粒子数目的 out 态上的概率，由于粒子数不同的 in
态和 out 态可以视为粒子数算符的不同本征态，因而它们是互相正交的。我们考虑将
一个 in 态分解到 out 态这套基底上：

|in⟩ = ∑
n′

|n − particles out⟩

那么我们可以拿出 n -out 态的波函数，具体而言：

所以我们知道一个 in-state 的 n -out state 分量的动量波函数是：

ψn−out(p
′) = ∫ ~

dp
1

√n!√n′!
ψin(p) ⋅ i ⋅ δ(pin − pout) ⋅ (2π)4 ⋅ T

注意：我们这里拿到的是 n -out state 分量的波函数，所以我们把 pin 积掉了。
所以现在计算概率：

⟨out|in⟩ = ∑
n′′

⟨out|n′′ − out⟩

= ⟨out|n′ − out⟩

=
1

√n!√n′!
∫ ~

dp
~

dp′ψ⋆
out(p

′)ψin(p) ⋅ i ⋅ δ(pin − pout) ⋅ (2π)4 ⋅ T

= ∫ ~
dp

~
dp′ψ⋆

out(p
′)ψn−out(p)



其中：

gi(a) = ∫ ~
dqfi(q) exp(iqa)

注意：在上面的推导中，我们将积分 ∫ ~
dp

~
dq 直接后移了，这是因为我们已经假设了系

统入射波函数仅在 (p1, ⋯ , pn) 处有值。我们直观理解一下上面算了什么：我们对出射
粒子的动量、入射粒子的位置进行了积分，这相当于我们把不关注的东西积掉了，只
留下了“边缘”。所以这里 gi(a) 可以视为入射粒子在空间中的振幅。取定时间 a0，归一
化关系是：

∫ d3a∥gi(a)∥2 = exp(−i(q0 − p0))∫ ~
dq

~
dpfi(q)f ⋆

i (p)δ(→p − →q) =
1

2ω
→k

=
1

2k0
i

所以有：概率密度

ρi(a) = 2k0
i ∥gi(a)∥2

这个概率密度是在动系中看到的，被“压缩”的概率密度，在静系中看到的概率密度和
动系中的概率密度有如下关系：

ρ
(0)
i (a) = √1 − v2

i ρi(a) =
2m

2k0
i

ρi(a) ⇒ ∥gi(a)∥2 =
ρ

(0)
i

(a)

2m

所以我们最终有了射出 n 个粒子的概率的公式（这个公式可以轻易推广至多种粒子的
情形）：

⟨n − out|n − out⟩ = ∫ ~
dp′ψ⋆

n−out(p
′)ψn−out(p

′)

= ∫ ~
dp′ ~

dp1
~

dp2
1

n!n′!
δ(pin,1 − pout)δ(pin,2 − pout)(2π)8ψ⋆

in(p1)ψin(p2)Tp1→p

= ∫ ~
dp′ ~

dp
1

n′!
δ(pin − pout)(2π)8

T
2
p→p′f ⋆

1 (p) ⋯ f ⋆
n(p)f1(p) ⋯ fn(p)

= ∫ ~
dp′ ~

dp
~

dq
1

n′!
δ(pin − pout)(2π)8

T (p → p′)2[f ⋆(p)][f(q)]δ(p − q)

= ∫ ~
dp′ ~

dp
~

dq
1

n′!
δ(pin − pout)(2π)4

T (p → p′)2[f ⋆(p)][f(q)]∫ d4a exp(i(p −

= ∫ ~
dp′

1

n′!
δ(pin − pout)(2π)4

T (p → p′)2 ∫ d4a∫ ~
dp

~
dq exp(i(p − q)a)

= ∫ ~
dp′

1

n′!
δ(pin − pout)(2π)4

T (p → p′)2 ∫ d4a ∥g1(a)∥2 ⋯ ∥gn(a)∥2



P(n → n′) =
1

S
∫ dp′

T
2(2π)4δ(kin − pout)∫ d4a∏

i

ρ
(0)
i (a)

(2Mi)

Mi 是粒子的静质量。最右边的这个东西也可以写成 ∏i

ρi(a)

2Ei
，因为这是洛伦兹不变

量。 特别地，从这里立刻可以得到粒子（以坐标时计）的衰变率。只要把 ∫ d4a 分解
成时间、空间积分，再利用概率密度的归一化，立刻得到单位时间内衰变率：

Γ =
1

S
∫ ~

dp′
1

2Min

∥T ∥2(2π)4δ(k − pout)

我们可以定义以下微分散射截面：

dσ =
1

4∥→k∥CM√s
∥T ∥2(2π)4δ(kin − pout)

~
dp

′

总散射截面：

σ =
1

S
∫ dσ

在这样的定义下，微分散射截面和总散射截面都是洛伦兹变换下的不变量。撞击概
率：

P =
∥→k∥CM√s

E1E2
σ∫ dx∏

i

ρi(x)


