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KG 场的量子化
我现在考虑量子化一个场。为了保证因果性，我们要求任何两个有类空间隔的时空区
域内的可观测量对易，这就要求场量必须对易或者反对易：

φa(x)φb(y) = φa(y)φb(x)

同时，场的动力学方程是我们的基本假设之一。如果我们知道了场的动量和哈密顿
量，那么时空平移算符为：

U(lμ) = exp( iHl0 − iP 1l1 − iP 2l2 − iP 3l3

ℏ
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ℏ
)

海森堡绘景下，我们有：
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ℏ
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ℏ
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取时间、空间无限小得到海森堡方程：
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∂xi
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但是，我们一开始是不知道这个 H, P  的，所以我们要开始考虑猜出场方程。考虑一个
最基本的平面波，它满足方程：

(
∂ 2

∂t2
− ∇2 + ω2

0) exp(−iωt + i→k→x) = 0

所以我们猜测场方程就是：

(−∂ 2 + ω2
0)φ(x) = 0

记：

φ(x)φ(y) − σφ(y)φ(x) = C(x − y), σ = ±1

通过分别赋值 x = 0, y = 0 得到 C(−x) = −σC(x)。下面确定 σ，考虑：



(−∂ 2
x + ω2

0)(φ(x)φ(0) − σφ(0)φ(x))) = (−∂ 2 + ω2
0)C(x)

左手边是 0，我们考虑右手边，做个傅里叶变换：

~
C(k) = ∫ d4xC(x) exp(−ikx), C(x) =

1

(2π)4
∫ d4k

~
C(k) exp(ikx)

把这个东西代入之后我们发现只有在 k2 = −ω2
0 处 ~

C(k) 才能非零！我们记：

~
C(k) = C+2πδ(−(k0)2 + ω2

→k
)θ(k0) + C−2πδ(−(k0)2 + ω2

→k
)θ(−k0)

其中，ω
→k

= √ω2
0 + →k2，计算其反变换：

C(x) =
1

(2π)4
∫ d4k

~
C(k) exp(ikx)

利用 δ 函数的分解性质：

δ(f(y)) = ∑
i

1

f ′(yi)
δ(y − yi)

所以立刻得到结果：

C(x) =
1

(2π)3
∫ d3k

2ω
→k

(C+ exp(−iω
→k
t + ikx) + C− exp(iω

→k
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取 x0 = t = 0，有：

C(→x) =
1

(2π)3
∫ d3k

2ω
→k

(C+ + C−) exp(−i→k→x) ∝
J1(ω0x)

|→x|

由于前面对因果性的要求，我们必须有：

C(→x) = 0, C+ = −C−

所以我们的 ~
C(k) 是奇函数，C(x) 也是奇函数，立刻有 σ = +1。

KG 场的模式展开：

φ(x) = ∫ ~
dk (a(→k) exp(ikx) + a†(→k) exp(−ikx))

升降算符的基本对易关系：

[a(→k), a†(→l)] = 2ω
→k
(2π)3δ(→k − →l)



系统能量、动量算符：

H = ∫ ~
dk ω

→k
a†(→k)a(→k) + C, P = ∫ ~

dk →ka†(→k)a(→k) + C

场算符的等时对易关系中只有一个不是 0：

[φ(t, →x), π(t, →y)] = iδ(→x − →y)

非线性场的量子化

在 KG 场中，为了保证归一化关系是洛伦兹不变的，我们采用这样的归一化关系:

很容易求出下面的东西：

以及：计算傅里叶变换得到：

所以考虑 φ̂(−k)，我把它作用在真空态 |0⟩ 上，得到的结果应该是：

~φ(−k)|0⟩ =
2π

2ω
→k

δ(ω
→k

+ k0)θ(k0)|k⟩ = 2πδ(−(k0)2 + ω
→k
)θ(k0)|k⟩

这意味着如果我们的四矢量 k 在质壳上， ~φ(−k) 将生出一个粒子。

下面我们考虑非线性场 (−∂ 2 + ω2
0)φ(x) = c0 + c1φ + c2φ2 + ⋯。这样的场仍然有唯

一的基态 |0⟩，我们选择基态使得 P |0⟩ = 0, H|0⟩ = 0，为了做这一点，我们相当于移
动了所有的态，包括我们的单粒子态。所以现在我们的质壳条件变成 −(k0)2 + ω2

→k
= 0

，其中 ω
→k

= √→k2 + m2。与线性场相比，这里最大的不同是我的场算符作用在 |0⟩ 上

⟨k|l⟩ = ⟨0|a(→k)a†(→l)|0⟩

= ⟨0|a(→k)a†(→l) − a†(→l)a(→k)|0⟩

= ⟨0|(2π)32ω
→k
δ(→k − →l)|0⟩

= (2π)32ω
→k
δ(→k − →l)

⟨k|φ(x)|0⟩ = ⟨0|a(→k)∫ ~
dl(a(→l) exp(ilx) + a†(→l) exp(−ilx))|0⟩

= exp(−ikx)

~φ(k) = ∫ exp(−ikx)φ(x)dx

=
2π

2ω
→k

(a(→k)δ(ω
→k

− k0) + a†(−→k)δ(ω
→k

+ k0))



可能不会只得到单粒子态的线性组合。考虑 ~φ(−k)，我们已经证明这是一个产生算
符，如果 k0 − →k2 < Δ（Δ 是允许双粒子态出现的最低能量），那么：

~φ(−k)|0⟩ = 2π√ζδ(k2 + m2)θ(k0)|→k⟩ + η(2π)4δ(k)|0⟩

也就是说要么 k 在质壳上产生单粒子态，要么产生 |0⟩ 态。

LSZ Reduction Fomula
有两个函数 ψ1(x), ψ2(x)，如果它们的傅里叶变换在质壳上是相等的，那么我们称它们
在壳等价。如果 ψ1(x), ψ2(x) 在动量空间中几乎是个 Delta 函数，那么它们可以配合
场算符用于创建相同的单粒子态：

∫ d4xψ1(x)φ(x)|0⟩ = ∫ d4xψ2(x)φ(x)|0⟩

令：

F(x) = ∫ d3l

(2π)3
f(→l) exp(−iω

→l
t + i→l→x)

那么可以证明 F(x)g(t − T ) 这样的函数全是在壳等价，其中 g(⋅) 有远大于 m−1 的带
宽。
下面我们打算算散射振幅，我们需要构建入射、出射粒子态。我们需要一个东西帮助
我们框定粒子的时间和空间范围：

uα(xα) = g(tα − T−)∫ d3p

(2π)3
fα(→p) exp(−iω

→ptα + i→p→xα), T− → −∞

同理有 u′
α(x′

α)，只不过是把 T− 换成 T+。那么入射粒子：

Cα = ∫ d4xαuα(xα)φ(xα)  |in⟩ = C1 ⋯ Cn|0⟩

同理：

Dα = ∫ d4x′
αu′

α(x′
α)φ(x′

α)  |out⟩ = D1 ⋯ Dn′ |0⟩

我们要算的是：

⟨out|in⟩ = ⟨0|D†
1 ⋯ Dn′C1 ⋯ Cn|0⟩ = ⟨0|TD

†
1 ⋯ D

†
n′C1 ⋯ Cn|0⟩



为了计算这个，我们构造两个东西 C̄α 是把 Cα 中 T− 换成 T+， D̄α 亦然。如果我们
把上面算符序列中的一个 Cα 换成 C̄α，那么这个东西会被编时算符移到最左边，从而
整个列得 0，Dα 亦然。所以我们可以计算：

⟨0|T (D
†
1 − D̄

†
1) ⋯ (D

†
n′ − D̄

†
n′)(C1 − C̄1) ⋯ (Cn − C̄n)|0⟩

计算后会得到这样的结果：

特别地，对于纯纯的粒子态，也就是只含有一种动量成分的态：

一些关于解析延拓的笔记

简化起见，考虑一维时空。先说说传播子这个东西，两个真空态之间会夹着这样的编
时乘积：Tφ(t1)φ(t2)，也就是说要把这些场算符按照 t 的实部从大到小排序。我们也
可以定义一个标记 I，它负责将 t 的虚部按照从小到大的顺序排序。显然，考虑时间
的复平面，如果 t1, t2 在一条过 2，4 象限且穿过了原点，那么就有：

Δ(t1 − t2) := ⟨0|Tφ(t1)φ(t2)|0⟩ == ΔI(t1 − t2)⟨0|Iφ(t1)φ(t2)|0⟩

不难证明在 ⟨0|φ(t)|0⟩ = 0 时，∥ΔI(t)∥ ∝ exp(−m|Im(t)|) 。考虑求 Δ(t) 的傅里叶变
换，但是在对 t 积分的时候选择不同的路径，令：

Δ̂α(ω) = i∫
Cα

Δ(t)dt,  D̂α(ω) = i∫
Cα

ΔI(t)dt

这里的 Cα 是横穿 2，4 象限，过原点，且与实轴夹角 α 的直线。显然我们有
Δ̂α(ω) = D̂α(ω)，但是不同 α 对应 D̂α 的解析区域不同，D̂α 在：



−m + (Imω) cot α < Reω < m + (Imω) cot α

的区域内都是解析的。而且如果我选取两个不同 α 导致解析区域不同，那么在重叠的
区域内，D̂α(ω) 的值是相同的。所以我可以把所有 D̂α 视作对 D̂π/2 的解析延拓，下面
全部用 D̂ 代替（所以，如果我本来想处理实数 t，我完全可以先处理虚数 t 的情况，
再进行解析延拓）。如果 ω 是虚的，k4 = iω 是实数，那么这个时候我可以换变量
τ = it：

D̂(ω) = D̂ π
2
(ω) = i∫

−i∞

t=+i∞

exp(iωt)ΔI(t)dt = ∫
+∞

τ=−∞

exp(ik4τ)ΔI(−iτ)dτ

至于 ΔI(−iτ) 可以换成一个统计力学问题处理。

好，现在我们用以上的手法计算了 KG 场的传播子（把 t 的积分路径先放到虚轴上，
令 x4 = x4 = τ = it），我们的计算结果是：

Δ(x − y) = ⟨0|Iφ(x)φ(y)|0⟩ = ∫ d4kE

(2π)4

exp(ikE(xE − yE))

k2
E + m2

下面我们需要延拓回去。首先把上面的积分拆成：

Δ(x − y) = ∫ d3k

(2π)3
exp(i→k(→x − →y))∫

+∞

−∞

dk4

2π

exp(ik4τ)

(k4)2 + ω2
→k

算后面的一部分。利用留数定理，在 τ > 0 时应选择上半平面的半圆围道；τ < 0 反
之。所以：

Δ(x − y) = ∫ d3k

(2π)3
exp(i→k(→x − →y))

1

2ω
→k

exp(−ω
→k
τ), τ > 0

Δ(x − y) = ∫ d3k

(2π)3
exp(i→k(→x − →y))

1

2ω
→k

exp(+ω
→k
τ), τ < 0

现在，可以发现，只要 Re(τ) > 0，上面 τ > 0 的式子都是好用的；只要 Re(τ) < 0，
下面那个式子也是好用的！而我们一开始讨论的是 t 是纯虚数的情况，变量代换是
τ = it，所以 Re(τ)》0 对应于 Im(t) < 0，另外一边一样。于是我们得到结果：

Δ(x − y) = ∫ d3k

(2π)3
exp(i→k(→x − →y))

1

2ω
→k

exp(−iω
→k
t), Im(t) < 0

Δ(x − y) = ∫ d3k

(2π)3
exp(i→k(→x − →y))

1

2ω
→k

exp(+iω
→k
t), Im(t) > 0



这两项可以统一写成：

Δ(x − y) = ∫ d3k

(2π)3
exp(i→k(→x − →y))∫

exp(−iα)∞

k0=exp(iα)∞

idk0

2π

exp(−ik0t)

−(k0)2 + ω2
→k

除了通过以上的手段得到这个“统一写成”之外，还有一种手段是直接从

Δ(x − y) = ∫
d3k

(2π)3
exp(i→k(→x − →y)) ∫ +∞

−∞

dk4

2π

exp(ik4τ)

(k4)2 + ω2
→k

 这里下手。我们首先把变量替

换回去（k4 = ik0, τ = it），但是换回去之后我们发现这个东西只在 t 为纯虚的时候收
敛。究其原因，这是因为 k0 也是纯虚的，如果我们想要把 t 从虚轴上转出来，那么对
k0 的积分路径必须也反向旋转。换言之，若 t = |s| exp(−iα)，那么必然有：

Δ(x − y) = ∫ d3k

(2π)3
exp(i→k(→x − →y))∫

− exp(iα)∞

k0=exp(iα)∞

exp(−ik0t)

−(k0)2 + ω2
→k

现在我们把 k0 的积分路径往回转，为了不让路径穿越奇点，我们要把 ω
→k
 处的奇点稍

微往下压，另一边奇点稍微往上提，这就得到我们标准的传播子：

⟨0|Tφ(x)φ(y)|0⟩ = ∫ −id4k

(2π)4

exp(ik(x − y))

k2 + m2 − iϵ


