
类光无限远上的对称性；BMS,SPI群
#Asymptotic_Flat_Spacetime  #General_Relativity

上次我们说到要找到 I  上的对称性，也就是要找到 I  上的"渐近 Killing 场"。注意：
在 I  上的一个无限小对称性 ξ̂ 可能对应 (M, gab) 上的多个无限小渐近对称性（这样的
渐近对称性被成为是等价的）。然而，在 I  上不存在非退化的诱导度规，从而我们没
法说 ξ̂ 是保了 I  上的什么东西。为了说明这一点，我们在 I  上定义一个张量场
Γab

cd = nanb~hcd。这里的 na,nb,
~
hcd 都与规范选择有关，而 Γab

cd 却是规范无关的
（注意我们是在 I  上讨论，这里 Ω = 0）。并且 I  上的无限小对称性 ξ̂ 必然满足：
L

ξ̂
Γab

cd = 0。另外，如果我们有两个渐进平直时空 (M, gab), (M, gab)，它们分别对应

类光无限远 (I , Γab
cd), (I , Γab

cd)，则存在微分同胚 Ψ(I ) = I，使得
Ψ⋆Γab

cd = Γab
cd。既然我们能在各个渐近平直时空的 Γab

cd 之间建立联系，也就是说
Γab

cd 代表了渐进平直时空的普适几何。与闵氏时空的 ηab 一样，既然 Γab
cd 在不同渐

进平直时空中都是相似的（最多差一个微分同胚诱导的推前映射），那么它就可以视
作"背景"。
显然，I  上的无限小对称性也成群，且 Γab

cd 的普适性保证所有时空的对称性群都是
相同的。该群称为 BMS 群，是无限维群。此外，空间无限远 i0 上也有对称性群，称
为 SPI 群，它也是无限维李群。

类光无限远上的对称性：BMS 代数
我们将满足 L

ξ̂
Γab

cd = 0 的矢量场 ξ̂ 集合记作 B，而对称性群记作 B。容易验证 B 是
Lie 代数，这是因为取 ξ̂, η̂ ∈ B，则：

L
[ξ̂,η̂]

Γab
cd = 0

考虑有一嵌入映射 ζ，将 I 映射到 I +（下文中可能继续简写为 I）。可以通过 ζ 诱
导的拉回映射将 I  上的张量场拉回到 I 上。注意 ζ 并非微分同胚，因此并非所有的张
量场都可以被拉回。根据拉回映射的定义，只有下指标的当然可被拉回，但是上指标
场不一定，例如如果 va 不切于 I，那么就不可拉回。具体而言，对 I  上张量场的可
拉回性有一些限制：若张量场 T  的每一个上标都与 na 的缩并得 0，那么就可以拉
回。此外，可证明，如果 T  和 va 均可拉回，那么 LvT  也可以拉回，且：

ζ ⋆(LvT ) = Lζ ⋆(v)(ζ
⋆(T ))

––

–––

–



根据拉回的定义，我们可将拉回的张量场 ζ ⋆(T ) 认同为 T  在 I  上的限制。下面的证
明中，这个拉回映射被用于建立整个 ~

M 上的张量场和 I  上张量场之间的关系。

下面首先证明：

证明：

计算这个 Lie 导数：

分别计算：

其中 λ = Ω−1ξana。根据渐近无限小对称性的定义，趋于 I  时 Ω2Lξgcd 趋于 0，从
而：

(Lξ
~gcd − 2λ~gcd)|I = 0

由于 Lξ
~gcd 和 gcd 都光滑，从而 λ 光滑，从而 ξana = 0|I，于是 ξ̂a = ξa|I  确实是切

于 I  的（这验证了我们上面定义的正确性）。另一部分：

回代，可以验证式中每一项都可光滑延拓到 I  上，且在 I  上取值为 0. 从而完成证
明。

Theorem 12 5 1

若 ξa 是无限小渐近对称性，则 L
ξ̂
Γab

cd = 0 确实成立。

L
ξ̂
Γab

cd = Lζ ⋆(ξ)(ζ
⋆(nanb~gcd))

= ζ ⋆(Lξ(n
anbgcd))

= Lξ(n
anb~gcd)|I

Lξ(n
anb~gcd) = nanbLξ

~gcd + 2~gcdn
(aLξn

b)

Lξ
~gcd = LξΩ

2gcd

= Ω2Lξgcd + 2gcdΩLξΩ

= Ω2Lξgcd + 2gcdΩ−1ξa∇aΩ

= Ω2Lξgcd + 2gcdΩ−1ξana

= Ω2Lξgcd + 2gcdλ

Lξn
b = −λnb + Ω~gbe

~
∇eλ − nf~gbe(Ω2Lξgef)



借用前面计算的结果：

根据上式，从右向左的证明是显然的。对于从左向右：

nanbL
ξ̂

~
hcd = −

~
hcd(naL

ξ̂
nb + nbL

ξ̂
na)

以 ~hae 缩并之（na
~
hae = 0）：

0 = 0 −
~
hcdn

b(
~
haeLξ̂

na)

从而 0 =
~
haeLξ̂

na，这意味着 L
ξ̂
na 是沿着 ~hae 的“退化方向”的，从而：

L
ξ̂
na = −kna

带回原式：

nanbL
ξ̂

~
hcd = 2k

~
hcdn

anb

∀p ∈ I ,na|p ≠ 0，从而 ∃θa, s. t. θan
a = 1，以 θaθb 缩并上式即完成证明。

Theorem 12 5 2

ξ̂a ∈ B 的充要条件为：I  上存在标量场 k 使得 L
ξ̂

~
hcd = 2k

~
hcd,L

ξ̂
na = −kna

L
ξ̂
Γab

cd = ζ ⋆[Lξ(n
anb~gcd)]

= ζ ⋆[nanbLξ
~gcd + 2~gcdn

(aLξn
b)]

= nanbL
ξ̂

~
hcd + 2

~
hcdn

(aL
ξ̂
nb)

Definition 2

I  上的无限小对称性称为 I  上的无限小超平移，若 I  上有标量场 α 使得
ξ̂a = αna。全体无限小超平移的集记作 S。

Theorem 12 5 3

设 ξa 是无限小渐近对称性，则 ξ̂a 是无限小超平移的充要条件：



这是直观的。充要条件说明 ξa|I  用 ~gab 衡量是类光的。I  上每一点只有一个类光方
向。可以验证，闵氏时空中四个平移 Killing 场给出 I  上的超平移，其余的 Killing 场
并非。

下面我们讨论一些使用了 Bondi 规范才会得到的结论。注意之前给出了 Bondi 规范的
三个等价条件：

Ω−1~gabnanb = 0
~
∇a

~
∇bΩ|I = 0 Ln

~gab|I = 0

通过对第三个条件使用 ζ ⋆ 拉回可以得到 Ln
~
hab = 0。

考虑与前面无限小对称性的必要条件对比，得到 k = 0。

从而得证。

取 αna,βna ∈ S：

lim
→I

Ω2gabξ
aξb = 0

Theorem 12 5 4

Bondi 规范下，αna ∈ B 的充要条件是 na ~
∇aα = 0，也就是说 α 应在每一条类光

母线上为常数。

Lαn
~
hab = αnc ~

∇c
~
hab +

~
hcb∇a(αnc) +

~
hac∇b(αn

c)

= αnc ~
∇c

~
hab + α

~
hcb∇an

c + nc~hcb∇aα + α
~
hac∇bn

c + nc~hac∇bα

= αnc ~
∇c

~
hab + α

~
hcb∇an

c + α
~
hac∇bn

c

= αLn
~
hab

= 0

−Lαnn
a = Ln(αna)

= αLnn
a + naLnα

= nanb∇bα

Theorem 12 5 5

S  是 B 的 Lie-Sub Algebra。



注意：αna,βna 都是 B 的元素，故 Lie Bracket 的结果必然在 B 中。使用 Bondi 规范
可以看出 [αn,βn] = 0。这一条件还可以再增强，即 S  是 B 的理想。为了验证这一
点，取 ξ̂a ∈ B,αna ∈ S：

可以验证， B/S  是洛伦兹 Lie 代数。这样做商，直观上相当于把 na 方向的信息商掉
了。

这里补充一下商 Lie 代数。设 H  是 G  的理想，则可定义商 Lie 代数。设 A,A′ ∈ G  且
A − A′ ∈ H，则称 A,A′ 处在同一个等价类中。商 Lie 代数是等价类的集合，其中元
素的 Lie Bracket 定义为：

[Â, B̂] = π([A,B])

其中 π 是从元素向等价类的投影映射。
B 和 Poincare 代数 P 可以类比，因为 P/T = L。我们先谈谈 Poincare 代数，对于
ξa ∈ P，我可以说它是位于 T  的内部或者外部。我们定义：

T = {ξa = ξμ( ∂

∂xμ
)

a

}

这个定义是依赖于坐标系的，但是就算我们换系，( ∂

∂x′μ
) 也可由原来的坐标基矢表

出。因此其实 T  的定义可以不依赖于坐标系。记：

Pp = {ξa ∈ P|ξa|p = 0}

显然，Rotation 和 Boost 的 Killing 场均在 Pp 中，所以 P 中可以给出无限多这样的
与 L  同构的子代数。

下面考虑 B。首先考虑 S，我们说过在闵氏时空中 (R4, ηab) 的每一个平移 Killing 场
给出 I  上的无限小超平移，然而，前者的集合是 4 维的，而后者的集合是无穷维的，
因此 S  中必然含有大量不能用 T  中元素诱导出的元素。现在我们希望在 S  中找到
由 T  诱导的无限小超平移集合，记作 TBMS。这个子代数不依赖于任何人为选择的因

[αn,βn] = Lαnβn
a

= βLαnn
a + naLαnβ

= −kβna + naLαnβ

= na(Lαnβ − kβ)

[ξ̂,αn]a = L
ξ̂
(αna)

= na(L
ξ̂
a − ak)



素（因为 T  本身不依赖于任何人为选择因素）。
再讨论 B 中的其余部分。在 B 中存在大量与 L  同构的子代数。在 I  上任取截面 C
，定义：

BC = {ηa ∈ B|ηa|C切于C} ⊂ B

设 ξ̂a ∈ B，则存在唯一 α ∈ R 使得 ηa|q = (ξ̂a − αna)|q，换言之我们存在 B → BC 的
映射 Ψ。将 ηa 视作独点子集，则 Ψ−1[ηa] 可以被认为是从一个等价类到等价类内元素
的投影映射，因此 ηa 是商 Lie 代数的元素。换言之：BC = B/S，所以只要选定一个
截面即可找到一个与 L  同构的 Lie 代数。

类空无限远上的对称性：SPI 代数
下面我们讨论 i0 上的对称性，i0 只是一个点，所以我们要将它打开。正如所有类光测
地线终止于 I +，所有的类空测地线终止于 i0，所以我们希望借助类空测地线讨论 i0

这一点处的结构。这里有一个问题是 (M, gab) 存在无穷多的共形规范，这使得我们无
法选择一个特殊的共形度规 ~gab 来描述类空曲线的测地性。解决办法是：先在 i0 之外
用原度规 gab 写出曲线的测地条件，再使用 ~gab 改写 gab 的测地条件，而后证明这样的
做法在 i0 处的极限与共形规范无关。现在考虑 γ(λ) 以是 gab 衡量的一条测地线，但是
λ 未必是仿射参数，设其切矢为 ηa，满足：

ηa∇aη
b = αηb

令（四加速）Ab = ηa∇aη
b，容易发现 γ(λ) 是（准）测地线等价于 η[aAb] = 0。为了能

在 i0 处取极限，我们把这个条件改造成 ~
∇a 表述的形式：

η[a ~
Ab] + Ω−1χη[a ~

∇b]Ω = 0

其中 ξ = ~gabηaηb,
~
∇bΩ = ~gbc∇cΩ。它另有一个等价形式：

~
hab(

~
Ab + χΩ−1 ~

∇bΩ) = 0

设 Wp 是与 ηa|p 正交的三维子空间，
~
hab 是 ~gab 在 Wp 上的诱导度规。现在 na 是类空

的，因此诱导度规的表达式 ~hab = ~gab − χ−1ηaηb。下面给一个简单的证明：改写前面
的测地线条件：

0 = ηa
~
Ab − ηb

~
Aa + χΩ−1ηa

~
∇bΩ − χΩ−1ηb

~
∇aΩ

上式两侧同时缩并 ~gac~gbdηd，得到：

0 = ηcηb
~
Ab − χ~gac

~
Aa + χΩ−1ηcηb

~
∇bΩ − χ2Ω−1~gac

~
∇aΩ



修改下标：

0 = ηaηb
~
Ab − χ~gba

~
Ab + χΩ−1ηaηb

~
∇bΩ − χ2Ω−1~gba

~
∇bΩ

两侧同乘 (−χ)−1：

这就完成了证明。可以证明，上面的测地线条件并非是规范依赖的，这是因为我们只
是将以 gab 衡量的测地条件以 ~gab 进行了改写。们将满足以下三个条件的曲线称为正规
线：

为了找出 SPI 的几何结构，我们讨论 i0 的切空间 (Vi0), ~gab|i0，在其上任选一组正交归
一基底 {eμ}，它的任意元素 x 就有四个分量 xμ。借助 {xμ} 系的对偶坐标基底可以在
Vi0  上定义度规 ηab = ημν(dxμ)a(dxν)b。我们称从 Vi0  中零元指向 x 元素的矢量

xμ(
∂

∂xμ
)

a

 称为 x 点的矢径。

显然，正规线的一个等价类在 Vi0  上留下一个点，并且这个点在一个“双曲面”
−(x0)2 + (x1)2 + ⋯ = 1 上：

0 = −χ−1ηaηb
~
Ab + ~gab

~
Ab − Ω−1ηaηb

~
∇bΩ + χΩ−1~gab

~
∇bΩ

= (~gab − χ−1ηaηb)
~
Ab + (~gab − χ−1ηaηb)χΩ−1 ~

∇bΩ

γ(0) = i0, γ 在 i0 为 C>1，其余的地方 C 3

γ(λ) 在 i0 处切矢长度为 1
lim→i0

~
hab(

~
Ab + χΩ−1 ~

∇bΩ) = 0

这里的第一条对曲线的连续性做出了一些要求，第三条要求曲线越接近 i0 越“类空
测地”。我们称两条正规线 γ, γ ′ 是等价的，当且仅当它们在 i0 有相同的 4-速和 4-
加速。注意：如果我们讨论的是测地线，那么“一点”+“一矢”已经可以确定“一测”。
然而我们现在的曲线只是“越来越测地”，不是真的测地，所以即使在一点上有相同
的速度、加速度也可以是两条不同曲线。把 ~hab 用 ~gab 升指标就得到投影映射 ~hab

：

~
ha

b = (δa b − χ−1ηaηb)
~
Ab =

~
Aa − χ−1ηa(ηb

~
Ab)

从而得到对 A 的分解：

~
Aa =

~
ha

b
~
Ab + χ−1ηa(ηb

~
Ab)

这两项分别被称为纵向和横向分量。上面的条件 ~hab(
~
Ab + χΩ−1 ~

∇bΩ) = 0 相当于
只对第一个分量有要求。我们记 SPI = {所有正规线的等价类}，或者称为 i0 的吹
胀。



我们定义这些点的集合：

K := {η̂ ∈ Vi0 |~gi0(η̂, η̂) = 1}

可以证明，K 上任意一点的矢径正交于 K，我们只考虑前两维，设
f(x0,x1) = −(x0)2 + (x1)2，则 K : f(⋅) = 1，其法余矢：

(df)a| = −2(x0(dx0)a + x1(dx1)a)

不难注意到矢径就是上式升指标后得到的法矢。

由于给出 SPI 的一个元素，我们就可在 K 上找到一点，所以我们有一个映射
π : S → K，注意 π 是一个投影映射，因为只要两个等价类在 i0 处的四速相同它们在
Vi0  上留下的就是同一个点，而两个留下同样的点的等价类在 i0 处四加速的纵向分量
可以不同。由于前面正规线的条件已经对 γ 的四加速的三个分量施加了约束，因此被
投影到 K 上同一点的两个等价类的 A 只能有一个分量的差距，所以不难看出 SPI 是
四维流形，并且是 K 上的纤维丛，这使得我们可以讨论 SPI 的一些特殊性质。首
先，由于 SPI 上的每条纤维是一个 1 维流形（SPI 上的曲线），所有纤维上各点处
切于纤维的切矢构成 S （以下将 SPI 简写为 S ）上的一个处处非零矢量场 va，称为
竖直矢量场，后面会讨论它与 I  上类光法矢场的对应。此外，Vi0  上的 ηab 在 H 上诱
导出 h̄ab，而且这个度规非退化。通过将 h̄ab 拉回到 S 上，得到 S 上的 hab，但是这样
直接拉回的结果是退化的，因此 hab 无法充当 S 上的度规。考虑将 hab 作用在 va 和任
一矢量场 ub 上

habv
aub = (π⋆~

hab)v
aub = h̄ab(π⋆v

a)(π⋆u
b) = 0



也就是说 hab 和我们之前介绍的 I  上的 hab 很像，都是非退化的。现在我们希望类比
J 上的对称性来找出 i0 上的无穷小对称性，也就是说我们希望找一个矢量场，使
得：

Lξhab = 0,Lξv
a = 0

不难相信 {ξ} 是 Lie 代数，它被称作 SPI 代数，记作 G。下面我们要说明若 ξa ∈ G，
那么 ξa 可以通过 π⋆ 生成 K 上矢量场 ξ̄a。首先，S 上矢量场 va 诱导出 S 上单同群
{ψt : S → S}，直观上，这个映射把纤维上的一点搬运到另外一点。考虑 p, q ∈ Π−1[x]

，下证 π⋆(ξa|q) = π⋆(ξa|p)。由于：

Lξv
a = 0 ⇒ lim

t→0

1

t
(ψ⋆

t ξ
a − ξa) = 0 ⇒ ψ⋆

t ξ
a = ξa

从而 ξa|q = (ψt,⋆ξ
a)|q = ψt,⋆(ξa|p)。从而：

π⋆(ξa|q) = π⋆(ψt,⋆(ξa|p)) = (π ∘ ψt)|⋆(ξa|p) = π⋆(ξa|p)

另一个性质是，若 ξa 可以诱导出 ξ̄a，则：Lξhab = 0 等价于 Lξ̄h̄ab = 0。下面我们说
明 G  确实和 B 很像。定义：设 ξa ∈ G，则它是无限小超平移若 ξa = fva。下面我们
说明，若 ξ = fva，则 ξ ∈ G  充要于 Lξf = 0。不难完成这个证明：

ξa = fva ⇒ ξ̄a = 0 ⇒ L
ξ̄
h̄ab = 0 ⇒ Lξhab = 0

Lξv
a = Lfvv

a = −Lv(fv) = 0

这样的做法说明 f 在纤维上是常数，这与 B 上的无穷小超平移的行为是十分类似的。
我们同样将 G  上的无限小超平移记为 S， S  可以与 K 上的标量场建立一一映射：对
于 fva ∈ S，定义 K 上标量场 f̄ = f|p, p 在 x 处纤维上，反过来也是类似的。下面说
明 S  是 G  的阿贝尔理想。不难验证：

[fva, f ′va] = 0

[ξ, fv]a = Lξ(fv
a) = vaLξf

而 vaLξf 必然是 G  的成员，这种形式决定了它也是 S  的成员。还可以得到其他与
BMS 代数类似的结论，例如 G/S = L。证明这个结论需要找到两个 Lie 代数之间的
同构。我们宣称两个位于 S  中的元素位于同一个等价类中，记 {ξa} ∈ G/S，取 G  中
两个等价的矢量场，即 ξ′a − ξa = fva，那么 π⋆ξ

′a = π⋆ξ
a = ξ̄a，从而 ξ̄a 是 K 上的

Killing 矢量场。记 K 上 Killing 场的集合为 K，则我们可以找到 G/S → K  的映
射，我们不加证明地指出它是李代数同构，那么只需证明 K  同构于 L，这是很直观



的，可以观察 (Vi0 , ηab) 中除去平移的六个 Killing 矢量场的积分曲线均可以“躺”在 K
上，而它们又恰好是 K  上的 Killing 矢量场。

同样，S  也是无穷维的。与 BMS 代数中的 S  类似，现在我们说明，S  中有 TSPI，
它是 S  的 4 维理想。取 ω ∈ V ⋆

i0，将其指定为 ω = ωμe
μ = ωμ(dxμ)a，ωμ 为常数，则

我们指定了 Vi0  上的一个常对偶矢量场。以 ω̄a 代表 ωa 在 K 上的取值，而 K 上的每
一点都有矢径 ηa，记 f̄(ω) = ω̄aη̄

a, f(ω) = π⋆f̄(ω)。由拉回的定义，f(ω) 在每一条纤
维上必定为常数，从而 Lvf(ω) = 0，从而 f(ω)va 是一个无限小超平移。我们将这样
诱导出的无限小超平移的集合称为 TSPI。不难看出，诱导集合中的每一个元素需要一
个 4 D 常对偶矢量场，所以 TSPI  是 4 维的，下证明它是理想。取 ξ ∈ S，求：

换言之，我们是在问：

Lξf(ω) = f(ω′)

是否成立？方程两边整体作用一次推前映射，将问题推前到 K 上，问题转化为：

L
ξ̄
f̄(ω) = f̄(ω′)

是否成立？考虑：

定义 ω′
b = ωa∂bξ

a，那么 ∂cω
′
b = ωa∂c∂bξ

a = 0，所以我们构造的是常矢量场。

而 η̄bξ̄b = 0，这是因为 ξb 是 Vi0  中 6 个 Killing 场在 K 上的取值，它是切于 K 的，从
而与 K 的法矢正交，继续推导：

f̄(ω′) = ω̄a∂ a(η̄bξ
b)

[ξ, f(ω)va] = Lξ(f(ω)va)

= Lξf(ω)va

L
ξ̄
f̄(ω) = L ξ̄(ω̄aη̄

a)

= ξ̄b∂b(ωaη
a)

= ωaξ
b∂bη

a

= ω̄aξ̄
a

f̄(ω′) = ω̄′
bη̄

b

= η̄bωa∂bξ
a

= −ω̄aη̄b∂
aξb



于是我们解决了问题。


