
附录H：诺特定理
#General_Relativity  #Classcal_Mechanics

下面我们介绍著名的 Noether 定理：一个连续对称性必然导致体系的一个守恒律。

基于几何语言的证明

设 {xμ} 是 R4 上的整体坐标系，有平直度规：

ηab = ημν(dxμ)a(dxν)b

的 Riemann 张量 Rabc
d[η] 为 0。设 f : R4 → R

4 是微分同胚，则使用它推前后，f⋆ηab

也为 0。注意：新、老度规一般不同，除非 f 是等度规映射，但是，我们通过一个推
前映射将所有几何量从旧点搬运到新的点，所以黎曼张量这样的内蕴几何量不会改
变。
设 ψ 是 (R4, ηab) 上的某种物质场（张量场），并且略去所有张量指标。设 ξa 是 R4 上
任一光滑矢量场，fλ : R4 → R

4 是 ξa 产生的单参微分同胚群族，它将 ψ, ∂ψ, ηab 变成
新的场：

ψλ = f ⋆
λψ,  (∂aψ)λ = f ⋆

λ(∂aψ),  (ηab)λ = f ⋆
ληab

我们以 ∂a 代表与 ηab 适配的导数算符，而使用 ∂ ′
a 代表与 (ηab)λ 适配的导数算符，要

定义 ∂ ′
a，那么就要定义它作用在任意张量场上的效果，不难验证：∂ ′

a 作用在一个张量
场上，相当于先把这个张量场推前后使用 ∂a 作用，然后再拉回来。也就是说：

f ⋆
λ(∂aψ) = ∂ ′

a(f ⋆
λψ)

我们前面那使用 f ⋆
λ  作用到各个东西上，相当于对场的构型做了改变。所以现在的 L

应视为 ψ, ∂aψ, ηab 的局域函数，也就是：

L = L (ψ, ∂aψ, ηab)

现在使用 Lie 导数定义各个量的无穷小变化：

δψ = lim
λ→0

1

λ
(f ⋆

λψ − ψ) = Lξψ,  δ(∂aψ) = Lξ(∂aψ),  δ(ηab) = Lηab

那么，拉氏量的变化：



所以：

ξa∂aL = δL =
∂L

∂ψ
(Lξψ) +

∂L

∂(∂aψ)
Lξ(∂aψ) +

∂L

∂ηab
Lξηab

由于任意张量场的拉氏运动方程为：

∂L

∂ψ
= ∂a(

∂L

∂(∂aψ)
)

代入后得到拉氏量的变化：

ξa∂aL = ∂a(
∂L

∂(∂aψ)
)(Lξψ) +

∂L

∂(∂aψ)
Lξ(∂aψ) +

∂L

∂ηab
Lξηab

诺特定理是时空对称性的反应，所以现在我们将 ξa 选为 (R4, ηab) 上的 Killing 矢量
场，那么 Lξηab = 0, (ηbc)λ = ηbc，这又导致 ∂ ′

a = ∂a，所以有：

Lξ(∂aψ) = lim
λ→0

1

λ
(f ⋆

λ(∂aψ) − ∂aψ) = lim
λ→0

1

λ
(∂ ′

a(f ⋆
λψ) − ∂aψ) = ∂a(Lξψ)

于是上式简化为：

ξa∂aL = ∂a(
∂L

∂(∂aψ)
)(Lξψ) +

∂L

∂(∂aψ)
∂a(Lξψ)

又由于：

∂aξ
a = ηab∂aξb = η(ab)∂[aξb] = 0

所以上式可以改写为：

∂a(ξaL ) = ∂a(
∂L

∂(∂aψ)
Lξψ)

因此，矢量场：

δL =
dLλ

dλ

= lim
λ→0

1

λ
(L (f ⋆

λψ, f ⋆
λ(∂aψ), f ⋆

ληab) −L (ψ, ∂aψ, ηab))

= lim
λ→0

1

λ
(f ⋆

λL −L )

= LξL

= ξa∂aL



J a =
∂L

∂(∂aψ)
Lξψ − ξaL

满足连续性方程 ∂aJ
a = 0。定义张量场：

S ab = −
∂L

∂(∂aψ)
∂ bψ +L ηab

当 ξa 是平移 Killing 矢量场时，可以证明 Lξψ = ξb∂bψ，从而此时有 S abξb = −J a，立
刻得到 ∂aS

ab = 0。
可以证明，以上对于单个场的讨论可以推广到多个场的情形：只需将右侧的第一项改
为多项的加和，同时，拉氏量也应当改为总拉氏量。我们可以看看遮掩不放过会导出

什么样子的守恒量，例如，取 ξa = ( ∂

∂t
)

a

 ，可得到：

J a =
∂L

∂(∂aψ)
ψ̇ − ( ∂

∂t
)

a

L

则其 0 分量：

J 0 = ( ∂L

∂ψ̇
)ψ̇ −L = H

所以我们可以看到时间平移对称性导出的守恒量是能量！

关于正则能动张量

这里给出的正则能动张量 S ab 核之前熟知的能动张量并不一定相同（或者说大概率不
同），之前，从我们熟知的能动张量 T ab 中定义守恒流的方式是：La = −T abξb，它满
足：

∂aL
a = ∂a(−T abξb) = −T ab∂aξb = 0

现在，非对称的 S ab 将使得上面的证明不成立。特别地，若 ξa 是四个平移 Killing 矢
量场中之一，那么：

∂a(S abξb) = S ab∂aξb = 0

在 ξa 并非 Killing 矢量场时，这样的定义会出现问题。它还有诸多坏处，例如，对于
电磁场，S ab 没有规范不变性，且 ηabS ab ≠ 0 ，所以我们要改进 S ab 的定义。我们希
望找到另一个 S ′ab，使得 ∂aS

′ab = 0，而且 S ′ab 是对称化的。这需要我们将原来的 S ab

做对称化。上面的守恒流：



J a =
∂L

∂(∂aψ)
Lξψ − ξaL

是依赖于 Killing 场的，现在我们考虑 6 个独立的非平移 Killing 场：

ξaμν = −ξaνμ = xμ(
∂

∂xν
)

a

− xν(
∂

∂xμ
)

a

根据 Killing 场的下标，我们把 J a 加上两个下标：

J a
μν =

∂L

∂(∂aψ)
Lξμνψ − ξaμνL

引入记号：

lμνψ = Lξμνψ − ξbμν∂bψ

那么：

利用 ∂aJ
a
μν = 0，可以得到：

0 = ∂aJ
a
μν = ∂a(

∂L

∂∂aψ
lμνψ) − 2S[μν]

这里面有点难算的部分是验证 ∂ axμ = ( ∂

∂xμ
)

a

 。一个可行的方法是把抽象指标换成

具体指标，算出 ∂αxμ ，即 ∂ axμ 在坐标基底下的分量为 δaμ，从而完成了验证。定义
张量：

N c
ab =

∂L

∂∂cψ
lμνψ(dxμ)a(dxν)b

利用刚才导出的式子，可以得到：

2S [ab] = ∂cN
cab

J a
μν =

∂L

∂(∂aψ)
lμνψ +

∂L

∂(∂aψ)
ξbμν∂bψ − ξaμνL

=
∂L

∂(∂aψ)
lμνψ − S abξbμν

=
∂L

∂(∂aψ)
lμνψ − S a

b(xμ(
∂

∂xν
)

b

− xν(
∂

∂xμ
)

b

)



所以我们完成了 S ab 的对称化。引入张量 F cab，要求它满足 F cab = F [ca]b，
2F c[ab] = −N cab，这两个条件将 F cab 唯一确定为：

2F cab = N bca − N cab − N abc

现在令 Y ab = ∂cF
cab ，显然 ∂aY

ab = 0，所以取 S ′ab = S ab + Y ab 满足 ∂aS
′ab = 0,S ′ab

对称。这是因为

S ′[ab] = S [ab] + ∂cF
c[ab] = S [ab] −

1

2
∂cN

cab = 0

这里的 S ′ab 是我们之前谈到的能动张量 T ab，我们利用了 S ab 的规范自由性给它加了
点东西，从而完成了对称化。
下面我们讨论使用 S ab 和 T ab 定义出的各种守恒量是不是一样的，考虑
La = −T abξb,J a = −S abξb，先设 ξa 为平移 Killing 矢量场，那么：

La = J a − ∂c(ξbF
cab)

考虑守恒荷的密度：

L0 = J 0 − ∂i(ξνF
i0ν)

右边的第二项是一个三维散度，所以积分的时候可以转化成边界项，会消失。所以
La,J a 定义的守恒能量、动量一致。角动量也有类似的关系，经过计算可以得到：

La
μν = J a

μν − ∂c(ξbμνF
cab)

所以定义的角动量也没有区别。

总结一下，Sab 本身没有对称化，通过它的规范自由性我们可以对称化它。但是，Sab

和 Tab 定义了相同的守恒量。

基于坐标语言的证明

下面我们给出基于坐标语言证明 Noether 定理的过程。在证明之前，我们先复习如何
使用坐标语言对张量场进行描述。首先考虑标量场 ϕ : R4 → R

4，它与任意坐标系
{xμ} 结合诱导出四元函数 ϕ(x)，我们也可以以 ϕ′(x′) 代表 ϕ 与 {x′μ} 结合得到的四元
函数，则：

ϕ′(x′|p) = ϕ|p = ϕ(x|p)

因此，我们换一个坐标系，标量场与坐标系结合所得的函数就会发生变化。类似地，
在我们更换坐标系的时候，由于坐标基底和对偶基底的变换，矢量和对偶矢量的分量



将发生变化：

u′μ|p =
∂x′μ

∂xν
|pu

ν|p

若 ψ 是 (k, l) 型张量场，则在坐标语言中它有 4k+l 个分量，但是我们通常只使用一个
指标做区分，将分量记作 ψi(x)，那么拉氏密度是：

L (x) = L (ψi(x), ∇μψ
i(x), gμν(x))

其中，∇a 是与 ηbc 适配的导数算符。以 (R4, ηab) 上的电磁场为例，其场量 ψ 是电磁
4-势能，则几何语言中，无源电磁场的拉氏密度为：

L = −
1

4π
ηacηbd(∇aAb)∇[cAd]

在坐标语言中：

L (x) = −
1

4π
gμρ(x)gνσ(x)(∇μAν(x))∇[ρAσ](x)

若我们有另一坐标系 {x′μ}，则 L (x) 变为：

L
′(x′) = L (ψ′i(x′), ∇′

μψ
′i(x′), g′

μν(x′))

虽然在任意时空 (M, gab) 中的 Killing 场都可以诱导出守恒量，但是我们这里只从一个
洛伦兹坐标系开始讨论。在下面的推理中，我们略去 gμν(x) 的分量变化，因为我们最
终得到的结论是只有 Killing 场才诱导出守恒量，显然，在 Killing 场诱导的坐标变换
下，gμν 的分量是不变的。因此略去 gμν 分量的变化不会影响我们的结论（尽管这样做
是不严格的）。下面考虑 {xμ} 是洛伦兹系， {xμ} → {x′μ} 是无穷小庞加莱变换，考
虑这一坐标变换导致的 L  的改变：

其中：

δ1L = L (ψ′i(x′), ∂ ′
μψ

′i(x′)) −L (ψ′i(x), ∂ ′
μψ

′i(x))

δ2L = L (ψ′i(x), ∂ ′
μψ

′i(x)) −L (ψi(x), ∂μψ
i(x))

其中 δ1L  是坐标变化导致的拉氏量变化；δ2L  是函数变化导致的拉氏量变化。令：

δψi(x) = ψ′i(x) − ψi(x) δ∂μψ
i(x) = ∂ ′

μψ
′i(x) − ∂μψ

i(x)

L
′(x′) −L (x) = δ1L + δ2L



那么拉氏量的第二部分变化：

δ2L =
∂L

∂ψi(x)
δψi(x) +

∂L

∂∂μψi(x)
δ∂μψ

i(x) = ∂μ(
∂L

∂∂μψi(x)
δψi(x))

其中使用了拉格朗日方程以及 δ∂μψ
i(x) = ∂μδψ

i(x)。令 δxμ = x′μ，那么这一部分的拉
氏量变化是：

δ1L =
∂L (x)

∂xμ
δxμ

那么，对称性条件 δ1L + δ2L = 0 表述为：

∂μ(
∂L

∂(∂μψi(x))
δψi(x)) +

∂L (x)

∂xμ
δxμ = 0

现在考虑坐标变换是 Killing 场，设无穷小变换的参数是 δλ，那么：

δxμ = ξμδλ

由于 Killing 性导致 ∂μξ
μ = 0，所以：

∂L

∂xμ
δxμ =

∂L

∂xμ
(ξμδλ) =

∂

∂xμ
(L ξμδλ)

从而：

∂μ(
∂L

∂∂μψi(x)

δψi(x)

δλ
+L ξμ) = 0

所以我们可以将 ∂μ 内的内容定义为守恒流。要证明这里给出的守恒流和之前相同，只
需证明 δψi(x) = −(Lξψ)iδλ，这个证明是简单的。我们知道，微分同胚映射 ϕδλ 诱导
出一个坐标变换 {xμ} → {x′μ} ，由“新新老=老老新”，有：

((ϕδλ)⋆ψ)(x′μ) = ψ′(x′μ)

这里只是需要注意：对于一个标量场来说，它与一个坐标系结合形成的“分量”就是
ψ(x)，因此，老张量与新坐标系结合所得的分量是 ψ′(⋅)，该分量满足变换关系：

ψ′(x′) = ψ(x)

那么立刻就可以看出：

((ϕδλ)⋆ψ)(⋅) = ψ′(⋅)



根据 Lie 导数的定义：

δλLξψ(xμ) = ((ϕδλ)⋆ψ)(xμ) − ψ(xμ) = −(ψ′(xμ) − ψ(xμ)) = −δψ(xμ)

从而得证。


