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关于勒让德变换

我们将流形 M 的切丛 TM 定义为流形上每一点处切空间之并，原流形上的坐标系自
然在切丛上诱导出一组坐标 (xμ, vμ)。称如下集合是一条纤维：

Fm = {(m, va)|va ∈ Vm}

不难看出存在自然的投影映射 π，使得 π((m, va)) = m。不难同样定义流形 M 的余切
丛 T ⋆M，它在 m 点的纤维表为：

F ⋆
m = {(m,ωa)|ω ∈ V ⋆

m}

切丛和余切丛都是流形的纤维丛的特例。

下设 C  是构形流形，拉氏量定义为 TC  上的标量场。选定坐标系后，拉氏量可以表为
L(q i, vi)，注意此时我们还并没有在 q i, vi 之间建立联系，此时二者是独立的。现取
σ ∈ TC  ，定义：

pi :=
∂L(q, v)

∂vi

不难直接验证在 C  上有坐标变换时其变换规律与对偶矢量一致，因此我们可以说它是
Q = π(σ) 上的对偶矢量，可写为 pa = pi(dq i)a。由于给定一组 (q, v)，就可以得到一
个 pa，并且我们可以缩并 pava，所以我们可以说 pava 也是 TC  上的标量场，于是我
们可以定义一个新的标量场：

~
H = pav

a − L

另一方面，构形流形的余切丛 T ⋆
C  称为系统的相空间，记作 Γ，将 P ∈ Γ 表为

P = (Q,ωa)，在 C  上选择一个坐标系后，Γ 上自然也有一个坐标系。在选定拉氏量后
可以自然地定义映射（在前面从拉氏力学到哈氏力学的过程中我们已经定义了这个映
射）f : TC → Γ，使得 ∀σ = (Q, va)，f(σ) = (Q,ωa)，并且 ωi|f(σ) = pi|σ。我们将这
样的映射称作勒让德变换。注意：在前文中我们已经体会过，勒让德变换的表现与拉
氏量的 Jacobi 矩阵 Jij 密切相关，而且容易验证 Jij 是 C  上的张量。如果在 TC  上的
每一点都有 Jij ≠ 0，则 f 至少是局部一一映射，则 (f−1)⋆ ~

H 就是定义在 Γ 上的哈密



顿量，此时就是无约束的情形；否则，f 不一一到上，H 无法按照上面的方式定义，
这就是有约束的情形。

下面我们着重考虑有约束的情形，此时 TC  上的一点 σ 应满足约束 ϕm(q, p) = 0，做
完勒让德变换后自然要求 f(σ) 满足 ϕm(q i,ωi) = 0，这就得到的初级约束的子流形
Γ1 = 0。我们首先直接借 ~

H : TC → R 和 f : TC → Γ 在 Γ1 上定义一个哈氏量，而后
再将其定义域延拓至 Γ。我们将讨论 f−1[P ] 只有一个弧连通分支的情况，设：

(q i, vi1), (q i, vi2) ∈ f−1[P ]

则必存在曲线 β(s) : [0, 1] → f−1[P ] 使得 β(0) = (q i, vi1),β(1) = (q i, vi2)，由于这条曲
线上都有 pi|βs = ωi|P，从而曲线两端 ~

H 的差：

~
H(q, v2) −

~
H(q, v1) = ωi|P (vi2 − vi1) − L(q, v2) + L(1, v1)

另一方面，计算：

因此，我们看到在这条曲线上 ~
H 不变，可见 ~

H|f−1[P ] = 0，从而我们可以令：

H(P) =
~
H|σ,  σ ∈ TC  s. t. f(σ) = P

现在我们说明以上内容如何用于描述物理系统的运动。对于拉氏理论， C  中中一条曲
线 q i(t) 自然给出 TC  中的一条曲线 (q i(t), q̇ i(t))（这被称为 C  中曲线的提升曲线）。
拉氏方程中的 q i, vi 本身自然是互相独立的，但是当我们谈及演化线时，它们就不再独
立了。
对于哈氏形式，对 TC  上的演化线做勒让德变换后自然得到 Γ1 上的演化线，这条演
化线服从哈密顿方程。然而，有一个问题是哈密顿方程中将涉及 H 对所有 qi, pi 的偏
导数，然而我们刚才只在 Γ1 上定义了 H，岂不是有些偏导数没有意义？这时我们需
要做延拓，将 H 的定义延拓到全空间中，下面讨论不同的延拓方式是否导致不同的演
化。设有两个延拓 H 和 H ′，记 H ′′ = H ′ − H，从而 ∇AH

′′|Γ1
 为 Γ1 的法余矢，从

而：

∇AH
′′ = μm∇Aϕm

L(q, v2) − L(q, v1) = ∫
1

0

d

ds
L(q, v(s))ds

= ∫
1

0

∂

∂vi
L(q, v(s))

dvi(s)

ds
ds

= ωi|P
dvi(s)

ds
ds

= ωi|P (vi2 − vi1)



用对偶基底展开比较系数：

∂H ′′

∂q i
= μm ∂ϕm

∂q i
,  

∂H ′′

∂pi
= μm ∂ϕm

∂pi

从而，如果 (q, p,λ) 满足方程：

q̇ i =
∂H

∂pi
+ λm ∂ϕm

∂pi
,  ṗi = −

∂H

∂q i
− λm ∂ϕm

∂q i

那么 (q, p,λ′ = λ + μ) 满足方程：

q̇ i =
∂H ′

∂pi
+ λ′m ∂ϕm

∂pi
,  ṗi = −

∂H ′

∂q i
− λ′m ∂ϕm

∂q i

随意进行两种不同的延拓并不会带来不同的演化，哈氏量不同的效果可以通过选择不
同的拉氏乘子来抵消掉。在本书后面的讨论中将允许对哈氏量的任意延拓。

在有了这样的认识之后，我们来讨论一下前文中对于 Hamilton 方程的推导。我们是通
过对比这样两个式子：

dH = q̇ idpi − ṗidqi

与

dH =
∂H

∂q i
dq i +

∂H

∂pi
dpi

来推出 Hamilton 方程组的。然而，注意第一个式子来自于 H 本身，是 T ⋆C  上的等
式，而第二个式子来自于 d(piq̇ i − L)，因此这其实是 ~

H，是 TC  上的等式。为何联立
这两个等式就得到了 Γ = T ⋆C  上的等式？首先，勒让德变换给出 (Q, vi) ↦ (Q,ωi) 的

映射，我们将其定义为 pi :=
∂L(q, v)

∂vi
，从而：

d
~
H = vidpi −

∂L

∂q i
dq i

在之前的定义中，若 f 为一一映射，则我们定义 H = (f−1)⋆ ~
H，也就是说 ~

H = f ⋆H

。我们现在定义：T ⋆C  上的一个无挠导数算符：

∇T ⋆CT = f ⋆(∇f⋆(T )),  T ∈ T ⋆
C

其中 ∇ 是 TC  上的无挠导数算符。由于对于任意无挠导数算符有 ∇aH = (dH)a，立
刻得到性质：



d
~
H = f ⋆(dH)

把这里的 H 换成任意一个函数都是可以成立的，下文中我们还将反复使用这个性质。
我们有：

最后一个等号利用了勒让德变换的定义。由于对于演化线上有
∂L

∂q i
=

dpi
dt

= ṗi, vi(t) = q̇ i(t)，从而我们可以在 TC  的演化线上比较两个式子，得

到：

((q̇ − f ⋆ ∂H

∂ωi

)dpi − (ṗi + f ⋆ ∂H

∂q i
)dq i)|σ = 0, ∀σ ∈ ~η(t)

下面我们要为把这个式子最终放到 T ⋆C  上做准备。我们又知道：

dq i = d(f ⋆q i) = f ⋆dq i dpi = d(f ⋆ωi) = f ⋆dωi

从而 f ⋆dq i, f ⋆dωi 是 σ 点的对偶矢量，从而上式写为：

((q̇ − f ⋆ ∂H

∂ωi

)(f ⋆dωi)A − (ṗi + f ⋆ ∂H

∂q i
)(f ⋆dq i)A)|σ = 0, ∀σ ∈ ~η(t)

这个东西是 σ 点处的 0对偶矢量，从而对 ∀uA ∈ Vσ 都有：

((q̇ − f ⋆ ∂H

∂ωi

)(f ⋆dωi)A − (ṗi + f ⋆ ∂H

∂q i
)(f ⋆dq i)A)uA|σ = 0

方程两侧作用推前映射，得到：

((q̇ −
∂H

∂ωi

)(dωi)A − (ṗi +
∂H

∂q i
)(dq i)A)(f⋆u)A|σ = 0

以 Wf(σ) 代表 Vf(σ) 中切于 Γ1 的元素构成的子空间，则 uA 跑遍 Vσ 导致 (f⋆u)A 跑遍
Wf(σ)，从而左边是 Γ1 在 f(σ) 处的法余矢，从而它可以写成 λm(t)∇Aϕm。

拉氏角度看约束

d
~
H = f ⋆ ( ∂H

∂q i
(dq i)a +

∂H

∂ωi

(dωi)a)

= f ⋆ ( ∂H

∂q i
)d(f ⋆q i) + f ⋆ ( ∂H

∂ωi

)d(f ⋆ωi)

= f ⋆ (
∂H

∂q i
)dq i + f ⋆ (

∂H

∂ωi

)dpi



前面我们已经知道，不恰当的拉氏量选择会在我们使用哈氏理论分析系统时给我们迎
头痛击——加上初级（甚至次级）约束，但是我们怎么没在分析拉氏系统的时候感受
到这些约束呢？只要系统的 N  个构型变量 q1, ⋯ qN  完全独立，系统演化必然服从拉
氏方程。考虑到：

d

dt

∂L

∂q̇ i
=

∂ 2L

∂vi∂vj
Aj + vj

∂ 2L

∂vi∂q j

从而令 Jij =
∂ 2L

∂vi∂vj
,Ci =

∂L

∂q i
− vj

∂ 2L

∂vi∂q j
，拉氏方程重写为：

JijA
j = Ci

若 Jij = 0，则勒让德变换并不一一到上，从而将 TC  映射到 Γ1。考虑一条演化曲线
~η(t)，并有 ~η(0) = σ，若 Jij|σ ≠ 0，则可求出 Ai|σ 的唯一解；若 TC  上处处 Jij ≠ 0，
则可在 TC  上给出一个演化矢量场：

Y a = vi(
∂

∂q i
)

A

+ Ai(
∂

∂vi
)

A

显然其积分曲线就是演化曲线。然而，若 TC  上处处多有 J = 0，不妨设 J 的秩在
TC  上为常值 Z，那么存在 N − Z 个非 0 的非 0 的 βi

(s) 使得：

(βi
(s)Jij)|σ = 0

这立刻给出：

μ(q, v) = βi
(s)Ci = 0

这里的 μ(q, v) 就是 TC  上的函数，从而 TC  上不满足上式的点完全不可能有演化曲线
经过，这就是 TC  中的约束，这些约束虽然不是在拉氏量选择后立刻得到的（而是配
合运动方程给出的），但是未必与哈氏理论中的次级约束对应。我们将约束中不含 v
的称为 A 型约束，否则称为 B 型约束，A 型约束两侧对时间求导后得到
μ̇s(q(t), v(t)) = 0，这是进一步的约束；而 B 型约束求导后得到 μs(q, v,A) = 0，这是
关于 q, v,A 的方程而不是 TC  上的约束，应当与拉氏方程联合求解。而新的约束同样
应满足自洽性条件，因此以上讨论也可以递归进行，直至不再添加新的约束为止。最
终，我们得到的结果是：以 S̄ ⊂ TC  代表某个约束面，则仅在 S̄ 上有约束线经过，且
f[S̄] = Γ̄。
在无约束的时候，由于我们能在整个 TC  上定义矢量场，其积分曲线即为演化线，从
而每一点只有一条演化线经过。约束的存在不仅将演化线可以运行的范围限制在子集



S̄ 上，还使得经过每一点的演化线可能不止一条。这是由于设 ~η(t), ~η′(t) 均为过 σ 的演
化线，它们在 σ 处的加速度为 Ai,A′i，在 J 不满秩时，Jij(A

′i − Aj)|σ = 0 显然有非
零解。
下面我们聊聊在哈氏理论中的拉氏乘子 λ。在我们之前的推导中，ξA 是 Γ1 上的法余
矢。我们之前将其作为演化线上的函数 λ(t) 直接引入，事实上，它们也可以被视为
S̄ ⊂ TC  上的函数。设 σ ∈ S̄, f(σ) = P，Y A 为 TC  上的演化矢量场，则可使用 f ⋆ 将
其变为 f(σ) 处矢量 ZA = f⋆(Y A|σ)，并满足：

ZA = vi|σ(
∂

∂q i
)

A

|f(σ) + (AiJji + vj
∂ 2L

∂q j∂vi
)|σ(

∂

∂ωi
)

A

|f(σ)

这个式子很好证明，ZA 必然是 Γ̄ 上演化线的切矢，观察一下它的分量就知道上式是
对的。对于两条不同的演化线的切矢的像 Z ′A,ZA，显然有：

Z ′A − ZA = (A′j − Aj)Jji|σ(
∂

∂ωi

)
A

|f(σ) = 0

虽然 σ 处所有 Y A 的像相同，但是这不意味着 Γ̄ 上过 f(σ) 的演化线唯一，这是因为
有约束时可能出现拉氏乘子的自由性，并且此时 f−1[f(σ)] 不一定是 TC  的独点子集。
设 ∃σ̂ ∈ S̄ 使得 f(σ) = f(σ̂)，则不难看出过 σ̂ 点的演化线的切矢的像 ẐA ≠ ZA。下面
考虑 P ∈ Γ̄ 的逆像是个什么东西，不妨设 σ ∈ f−1[P ], σ̂ 是与 σ 无限临近的点，设 DA

是从 σ 指向 σ̂ 的矢量，则显然有 DA∇Aq
i = 0,DA∇Api = 0。将 DA 写成矢量展开

式：

DA = Di( ∂

∂vi
)

A

+
~
Dj( ∂

∂q j
)

A

从而第一个条件等价于 ~
Dj = 0，第二个条件等价于：

0 = Dj( ∂

∂vj
)

A

∇A

∂L

∂vi
= JijD

j

我们如下定义 σ ∈ TC  的切空间 Vσ 的子空间：

Dσ = {DA ∈ Vσ|DA = Dj( ∂

∂vj
)

A

,JijD
j = 0}

这是 f−1[f(σ)] 中一点 σ 指向集合中其他点的“所有可能”方向。显然这个子空间是
2N − Z 维的，我们可以说 TC  上有一个 N − Z 维的子空间场。可以证明它是可积
的，换言之，∀σ ∈ TC，有 N − Z 维子流形 Sσ，使得其上任意一点 ρ 处的切空间与



Dρ 重合，换言之通过指定前面的 Dσ，实际上我们已指定了一个 TC  的子流形 S  以及
其切空间。直观上，你可以想象 ∀σ ∈ TC  有 f−1[f(σ)] = Sσ。
设 γ(t) 是起自 f(σ) 的任意演化曲线，其在点 f(σ) 的切矢为 ZA，根据有约束情形下
的 Hamilton 方程有：

ZA = XH
A|f(σ) + λm(0)XA

m|f(σ)

不妨设另一条起自 f(σ) 的演化线在 f(σ) 处的切矢也是 ZA，从而两线 λm(0) 相同。由
于所有 S̄ 上的起自 σ 的演化线，其像都有全同的切矢，因此，指定 σ ∈ S̄ 后可以通过
先给出 Y A，再将其推前到 Γ̄ 上得到 ZA，再指定 λm(0) 的方式获得一组 λm，这样我
们可以给 S̄ 上的每一点分配 λm，于是 λm 可以视作 S̄ 上的函数（所以你猜它为什么
被叫做拉氏乘子）。注意 λm 不能视为 Γ̄ 上的函数，这是因为 f−1[P ] 未必是独点子
集。
我们考虑两个非常特殊的情形。第一种是 det(Φmn) ≠ 0，此时 Γ̄ 上每一点 P  已有一组
确定的 λm，因此也只有唯一的演化线经过 P  点。这正是因为此时 f 一一到上，因此
Γ̄ 上每一点继承了其原像处的 λm，此时 λm 也被视为 Γ̄ 上的函数。第二种情形是
Φmn = 0，即所有约束均为第一类，此时 f−1[P ] 的所有点的 λm 构成 M 维仿射空间。


