
有限自由度哈氏理论
#Classcal_Mechanics

前面我们说过，若系统有 M 个约束，那么系统的演化方程变成：

q̇i =
∂H

∂pi

+ λm(t)
∂ϕm

∂pi

ṗi = −
∂H

∂q i
− λm(t)

∂ϕm

∂q i

原则上，我们有 M 个拉氏待定乘子，以及 2N  个广义坐标，共有 2N + M 个函数，
可以由 2N  个演化方程和 M 个约束方程联立解出。下面我们讨论与解有关的一些问
题。

初级约束&次级约束
设受到约束后，系统的状态只能躺在 Γ 这个相空间的子流形上，设 γ(t) 是 Γ 上的一条
演化曲线，f 通过 γ(t) 诱导出一个一元函数 f(t) = f(q i(t), pi(t))，为了表达它对时间
的导数，我们可以定义泊松括号：

{f, g} =
∂f

∂q i

∂g

∂pi

−
∂f

∂pi

∂g

∂q i

它有如下性质：

将 f 取为 p, q，上式无非化简到演化方程。考虑将 f 取为 ϕm，那么得到：

反对称
对每个槽位的线性性

莱布尼兹律

Jacobi 恒等式
从而：

ḟ = {f, H} + {f, ϕm}λm

Warning

在约束面上 ϕm = 0 不意味着 {f, ϕm} = 0



ϕ̇m = {ϕm, H} + {ϕm, ϕn}λn = 0

这被称为自洽性条件，但是，自洽性条件并非永远成立，拉氏量的不恰当选择会导致
各种问题。举个例子：取 L = q1 + (q̇2)2，不难验证拉氏方程给出 1 = 0，在哈氏理论
中的表现就是自洽性条件不满足。下面我们只考虑拉氏量选得好的情况：记
Φmn = {ϕm, ϕn}，则它是一个反称矩阵；记 hm = −{ϕm, H}，上式被重新写为：

Φmnλn = hm

ϕm, H 都是已知函数，因此这个东西是关于 λn 的线性方程组，在系数矩阵可逆时立刻
解得：

λm = (Φ−1)mnhn

从而得到 Γ 上任一函数的演化方程：

ḟ = {f, H} + {f, ϕm}(Φ−1)mnhn

但是，物理上更常见的例子是 Φmn 不可逆，考虑最简单的情况是 Φmn = 0，则此时对
拉格朗日乘子没有任何限制，也就是说随便选择一组拉格朗日乘子代入，都可以得到
一条演化曲线。此时，初态不能完全决定系统的演化，也就是说 Γ 上的点与实际的物
理状态并非是一一对应的。
如果 Φmn = 0 成立，而 hm = 0 并非在整个 Γ1 上点点满足，那么就应当将 p, q 的取值
范围限制在 Γ2 ⊂ Γ1 中，这些为了满足自洽性条件而出现的约束称为次级约束。（换

言之，初级约束是因为拉氏量的选择导致不能从 pi =
∂L

∂q̇ i
 中反解出 q̇ i 而出现的约

束；而次级约束是在考察了约束随着时间的演化后，发现某些约束在 Γ1 上无法完全满
足，从而对系统的演化范围再次做出的约束），在次级约束施加后，通过
ϕ̇m = {ϕm, H} + {ϕm, ϕn}λn = 0 可能对 λn 加入新的限制，最终的约束面记作 Γ̄。Γ̄

上的函数被称为第一类的，如果它与所有约束函数（初、次级约束）的泊松括号为 0
，否则称为第二类的。有一直观结论：有多少个第一类初级约束，就有多少个自由拉
格朗日乘子。

下面使用几何语言讨论最自由的情况 Φmn = 0, hm = 0。利用 Γ 上的 M + 1 个函数
H, ϕm 可以在 Γ 上定义 M + 1 个矢量场：

X A
H =

∂H

∂pi

( ∂

∂q i
)

A

−
∂H

∂q i
( ∂

∂pi

)
A

根据 Hamilton 方程，这个其实是（无约束情况下的）演化矢量场。在有约束的情形
下，演化矢量场还需要叠加上：



X A
m =

∂ϕm

∂pi

( ∂

∂q i
)

A

−
∂ϕm

∂q i
( ∂

∂pi

)
A

而 ∇Aϕn 是法余矢，在刚才指定的简单情况 hm = 0 下有：

X A
H∇Aϕn = {ϕn, H} = hn = 0

这说明 X A
H

 本身就是切于 ϕn = 0 指定的超曲面，同样地：

X A
m∇Aϕn = {ϕm, ϕn} = 0

这说明演化矢量场：

wA = X A
H + λmX A

m

是切于 Γ1 的，从而拉氏乘子的选择有相当任意性。根据积分曲线的唯一性，任意在
Γ1 上指定 M 个函数 λm(q, p) 都可获得一条躺在 Γ1 上的积分曲线。

下面考虑更复杂的一般情况，即 Φmn 的秩为 z < M，那么，应当有 M − z 个独立列
向量 λn 使得 Φmnλn = 0。根据 Φmn 的定义知它是反对称的，那么就有 M − z 个独立
的行向量 lm

(s) 使得 lm
(s)Φmn = 0，据此（利用自洽性条件）推出：

lm
(s)Φmnhn = lm

(s)(Φmnhn) = lm
(s)hm = 0

下文中我们将 lm
(s)

 称为 Φmn 的消灭行向量。现在在约束面 Γ1 上每个点有 M − z 个独
立的消灭行向量，将它们任意地延拓到相空间 Γ 上，则 lm

(s)hm 是 (q, p) 的函数。然
而，自洽性条件不一定完全满足，如果自洽性条件部分地被违反，也就是出现在 Γ1 上
的某些点有 lm

(s)
hm ≠ 0，为了弥补这一点，就应当将 (q, p) 的取值范围做进一步限制，

也即所谓次级约束。设 ψu(q, p) = lm
(s)hm, u = 1, . . . , U(≤ M − z)，那么我们又将有 U

个约束 ψ(q, p) = 0，这将系统的运动范围进一步限制在 Γ2 ⊂ Γ1 上。下面将初级、次
级约束的自洽性条件作为一个整体进行讨论：

{ϕm, H} + {ϕm, ϕn}λn = 0,  {ψu, H} + {ψu, ϕn}λn = 0

这个讨论过程是"递归"的，ψu 可能无法满足自洽性条件，这可能导致新的次级约束，
因此这样的讨论过程应当不断进行下去。假定添加完所有约束后我们有 M 条初级约束
和 U  条次级约束，从而有 M + U  个线性方程，其系数矩阵：

Φ̄mn = [ ]
Φmn

{ψu, ϕn}



如果它满秩，则可以解出所有 M 个拉氏乘子 λn，否则若其秩为 z̄，则又只有 z̄ 个 λn

的线性组合是可以解出的，其余 M − z̄ 个任意。此时，存在 M − z̄ 个消灭列向量满
足：

Φmnξn
α = 0 {ψu, ϕn}ξn

α = 0

利用这些消灭列向量，我们构造一些新的但是与原来等价的约束函数。构造的具体方
法是：令 ϕ′

m = Cm
nϕn，其中矩阵 Cm

n 非奇异，那么 ϕ′
m = 0 与 ϕn = 0 决定的就是

相同的约束。据此，令：

ϕα = ξα
nϕn ϕβ = ηβ

nϕn

其中 ηβ
n 是适当系数。这个构造有性质：

{ϕα, ϕ′
α} = {ϕα, ϕβ} = {ϕα, ψβ} = 0

也就是说每缺一个秩我们其实是可以构造一个与所有约束对易的约束函数（第一类约
束）。这些新的约束与原约束的关系是：

ϕn = μα
nϕα + ν β

n ϕβ

其中 μn
α, νn

β 组成了与 ξ, η 矩阵的逆。构造新的拉氏乘子（把拉氏乘子一起线性变换
了）：

λα = μn
αλn, λβ = νn

βλn

从而初级约束满足的自洽条件被重新写为：

μα
m{ϕα, H} + ν β

m({ϕβ, H} + {ϕβ, ϕβ′}λβ′

) = 0

如果将 {ϕα, H} 以及 {ϕβ, H} + {ϕβ, ϕβ′}λβ′  视作未知数，那么上式是 M 个线性方程
组。由于 μ, ν 排成的矩阵是满秩的，因此上述方程组没有非零解。也就是说，我们可
以重新表达这一自洽性条件为：

{ϕα, H} = 0, {ϕβ, H} + {ϕβ, ϕβ′}λβ′

= 0

同样另一个自洽性条件写为：

{Ψu, H} + {Ψu, ϕβ}λβ = 0

所以我们发现，选取新的第一类约束 ϕα 后，它直接在所有自洽性条件中消失了，同
时拉氏乘子 λα 也消失了。由于拉氏乘子受到的所有约束均表现在自洽条件之中，因此



这些消失的乘子是自由的，我们就证明了之前的结论：有几个第一类初级约束，就有
多少自由的拉氏乘子。

此外，对于初级约束函数族的选择也具有规范自由性。例如对于前文中所述一组初级
约束，既可使用 ϕm = 0 刻画，又可使用 ϕα = 0, ϕβ = 0 刻画。不幸的是，不同初级约
束中, 第一类初级约束的个数可以不同，因此，前面的结论应该更准确地理解为：自由
拉氏乘子的数目等于第一类约束最多的那个规范（下文称"最大规范"）中第一类约束
的数目。下面证明 ϕα = 0, ϕβ = 0 恰好是一个最大规范。首先应证上文中 Φ̄mn 的秩是
规范不变的。设 ϕm = 0 与 ϕ′

i = 0 是两个规范，显然有：

∇Aϕ′
i = Am

i ∇Aϕm

令 ΩAB 为正则辛形式的逆映射：

ΩAB = ( ∂

∂q i
)

A

( ∂

∂pi

)
B

− ( ∂

∂pi

)
A

( ∂

∂q i
)

B

泊松括号可以写为 {f, g} = ΩAB(∇Af)(∇Bf)，从而：

{ϕ′
i, ϕ′

j} = Ai
mAj

nΩAB(∇Aϕm)(∇Bϕn) = Ai
m{ϕm, ϕn}

~
An

j

由于 {∇Aϕm} 已经是 Γ1 上法矢的一组基底了，所以我们还可以有：

∇Aψv = Bv
m∇Aϕm, ∇Aψv = Cv

u∇Aψu

从而立刻得到新的规范与旧的规范之间的联系：

[ ] = [ ] [ ] [ ]

由于第二个、第四个矩阵都是满秩的，因此可知 Φ̄mn 的秩有规范不变性。
在上面的推导中，我们最终找到了一个最大规范
{ϕ′

α = 0, ϕ′
β = 0, α = 1 ⋯ A, β = A + 1 ⋯ M} ，其中 ϕα 为第一类约束，同时有次级

约束 ψ′
v = 0, v = 1, ⋯ , U，则其 Φ̄mn 矩阵的秩 z ≤ M − A（这是因为该矩阵有 z 列为

0）。同时，按照前面讨论的方法，在 Φ̄mn 矩阵的秩为 z 时，我们至少能够构造出
M − z 个第一类约束，从而 A ≥ M − z。两式联立得到 A = M − z，从而我们构造出
的 M − z 个一级约束确实已经是最多的。

一个特殊情况的讨论

特别地，我们考虑有一个广义坐标对应的广义速度不出现在拉氏量中的情形，即：

{ϕ′
i, ϕ′

j}

{ψ′
v, ϕ′

j}

Ai
m 0

Bv
m Cv

u

{ϕm, ϕn}

{ψu, ϕn}
~

An
j



L = L(q1, qk; q̇k) k = 2, ⋯ , N

从而所有的动量表达式中均不含 q̇1，它无法被反解出。此时有初级约束：

ϕ(q, p) = p1 = 0

此时可以构造哈氏量 H = H(q1, ⋯ , qN , p2, ⋯ , pN )。通过具体计算可以得到演化方
程：

q̇1 = λ,  ṗ1 = −
∂H

∂q1
, q̇k =

∂H

∂pk

, ṗk = −
∂H

∂qk

第一个式子指出此时的拉氏乘子就是广义速度 q̇1，第二个式子是自洽条件，它要么在
Γ1 上处处为 0，要么成为新的次级约束。特别地，如果拉氏量从一开始就选择不当，
那么该式将无法满足，例如前面介绍过的 L = q1 + (q̇2)2。如果需要加次级约束，那么
考虑：

ψ(qk, pk, q̇1) =
∂H

∂q1

它应满足（属于次级约束的）自洽性条件：

0 = ψ̇ = {ψ, H} + {ψ, ϕ}λ

其中：

{ψ, ϕ} = {ψ, p1} =
∂ 2H

(∂q1)2

如果 H 对 q1 的依赖是线性的，那么 {ψ, ϕ} = 0，如果再有 {ψ, H} = 0，则所有约束
已经穷尽（下面要谈到的电磁场和引力场都是如此）。此时，所有约束均为第一类，
这意味着拉氏乘子完全是自由的，这将导致 q1 也完全任意。因此，我们不妨将 q1, p1

从相空间中开除，从而相空间的维度减少为 2(N − 1)。


