
广义相对论的哈氏理论
#General_Relativity

之前，我们通过引入 Hilbert 作用量将广义相对论改造成拉氏形式，现在，我们希望将
其改造成哈氏形式。简便起见，我们对时空的因果性做出一定要求：我们只讨论整体
双曲的真空时空，并且将对边界条件做出一定要求。显然，拉氏理论是一种相对论协
变的理论，但是哈氏理论并非，它天然依赖于 3+1 分解。现在设 Σ 是一个三维流形，
四维流形 M 上有光滑函数 t，使得每一个等 t 面 Σt 均同胚于 Σ。在 M 上指定光滑矢
量场 ta 代表 t 的增加方向（ta∇at = 1）。若给 M 指定洛伦兹度规使得 Σt 均为类空
超曲面，ta 为指向未来的雷士矢量场，我们称 {Σt}, ta 构成 (M, gab) 的 3 + 1 分解，ta

可以表示为

ta = Nna + N a

其中 N，N a 被称为时移和位移。在拉氏理论中的构型变量是 gab，因此将其 3 + 1 分
解就得到哈氏理论中的构型变量，我们说明这些构型变量是 (N ,Na,hab)。由于：

hab = gab + nanb ⇒ hab = gab + nanb

从而：

gab = hab − nanb = hab − N −2(ta − N a)(tb − N b)

一个 hab 决定了唯一的 hab，从 Na 可借 hab 求出 N a，从而 (N ,Na,hab) 足够帮我们定
出原来的 gab。找到了构型变量之后，考虑重写 Hilbert 作用量中 L = (−g)

1
2 R，使之

只含新的构型变量以及其时空导数。由于 Gab = Rab − R
1

2
gab，而我们的类光法矢 na

是归一化的，因此两侧与 nanb 缩并得到：

R = 2(Gabn
anb − Rabn

anb) = (
~
R − KabK

ab + K 2) − 2Rabn
annb

这里的 Kab 是等 t 面 Σt 的外曲率（或称为第二基本形式，诱导度规 hab 称为第一基本
形式），它的定义为：

Kab = ha
chb

d∇cnd

~
R 是 Σt 的曲率张量所对应的标量曲率。展开右侧的第二项：



把以上计算结果代入拉氏量密度中，略去边界项得到：

L = √hN(
~
R + KabK

ab − K 2)

Kab 可进一步表为：

Kab =
1

2
N −1(ḣab − 2D(aNb))

代入后就可将 L  改造成新的构型变量的函数。求广义动量：注意到 L  不含 Ṅ , Ṅ a，
所以与它们对应的正则动量是 0，这给出两个初级约束。经过计算得到与 ḣab 对应的正
则动量是：

πab = √h(K ab − Khab)

两侧与 hab 缩并，考虑到 habhab = 3，得：

K = −
π

2√h

由于 ḣab = 2NcKab + 2D(aNb)，而现在 Kab 可以完全被 πab,π,hab 表出，所以 ḣab 确
实可以被正则坐标和动量表出，也就是说没有新的约束被加入。将以上计算结果全部
代入，计算哈氏密度和哈氏量：

L = √hN ( ~
R +

1

h
(πabπab −

1

2
π2))

H = πabḣab −L = √hN (−
~
R +

1

h
(πabπab −

1

2
π2)) + 2πabDaNb

用一次分布积分，上面的哈氏量被写为：

H = ∫
Σt

√hN (−
~
R +

1

h
(πabπab −

1

2
π2)) − 2∫

Σt

√hNbDa(
1

√h
πab) + 2∫

Σt

Da(
1

√h
Nb

由于积分号下的体元仍然是 ~e，而 ~e√h = ~ϵ，所以这一项也可以通过高斯定理转化为边
界项，我们暂且先不讨论。只考虑哈氏量的如下部分：

naRabn
b = naRacb

cnb

= −na(∇a∇c − ∇c∇a)nc

= −∇a(na∇cn
c) + (∇an

a)∇cn
c + ∇c(n

a∇an
c) − (∇cn

a)∇an
c

= −∇a(na∇cn
c) + K 2 + ∇c(n

a∇an
c) − KacK

ac



H = ∫
Σt

(NC + NbC
b),C = −

~
R + h−1 (πabπab −

1

2
π2),C b = −2Da(√hπab)

计算两个次级约束：

π̇N =
δH

δN
= √hC,  π̇Na

= √hC b ⇒ C = 0,C b = 0

在约束满足时，我们得到 H = 0，这是由于边界项被忽略的结果。为了求得演化方
程，下面计算所有泛函导数，记：

H = H1 +H2 +H3 = −N√h
~
R +

N

√h
(πabπab −

1

2
π2) + 2πabDaNb

对 πab 的泛函导数：

δH

δπab
=

2N

√h
(πab −

1

2
πhab) + 2D(aNb)

这里加一个 (⋅) 是因为 H = ∫ χabδπ
ab，不难发现 πab 是对称的，所以 χab 有规范自由

性，所以我们在下标上加一个 (⋅) 来消除这种自由性。
一项一项求对 hab 的泛函导数，先看第一项，之前已经推导过：

δH1 = −N√hDava − N√h( ~
Rab −

1

2
~
Rhab)δhab

其中：

va = Dbδhab − hcdDaδhcd

把第一项中凑出 δhab：

上面的处理过程中我们忽略了所有边界项。利用 δa
b

= hachcb 可推出
δhab = −hachbdδhcd，可以将第一项的变分写成：

δH1 = (−√h(DaDbN − habDcD
cN) + N√h( ~

Rab −
1

2
~
Rhab))δhab

−N√hDava = −√h(Da(Nva) − vaD
aN)

= √hvaDaN

= √h(DaN)Db(δhab) − √h(DaN)hcdDaδhcd

= −√h(DbDaN)δhab + √hhcd(DaD
aN)δhcd

= (−√hDaDbN + √hhabDcD
cN)δhab



继续处理第二项，其中利用 δh = hhabδhab：

第三项，这里需要对协变导数算符求变分：

在推导的过程中我们已经利用了前面导出的次级约束。

最后我们可以讨论被忽略的边界项。在最初重写拉氏量的时候，我们就扔掉了两项，
而最初我们给出 Hilbert Action 的时候说过，我们的拉氏量中实际上是缺一个边界项
2 ∫

U̇
K 的。我们讨论的时空区域是被夹在 Σ1, Σ2 中间的区域 U，在 Σt 紧致且没有边

界的情况下，U̇ = Σ1 ∪ Σ2。我们要说明 2 ∫
U̇
K 的效果恰好与略去的 2∇a(na∇cn

c) 抵
消。我们使用 ~na 代表 Σ1, Σ2 上的内向法矢，而使用 na 代表指向未来的法矢，那么对
于 Σ1, Σ2 分别有 ~na = na, ~na = −na，下面将 Kab 改记为 ~

Kab，那么标量外曲率是：

~
K = hab ~

Kab = habha
c∇c

~nb = hcb∇c
~nb = gcb∇c

~nb + ~nc~nb∇c
~nb = ∇c

~nc

其中 ~nb∇c
~nb = 0 是因为 ∇c(~nb~nb) = 0。考虑被我们扔掉的这一项：

∫
U

2∇a(na∇cn
c)ϵ = 2∫

U̇

(na∇cn
c)~na = 2∫

U̇

(~na∇c
~nc)~na = −2∫

⋅U
∇c

~nc = −2∫
U̇

~
K

我们还扔下了一个东西，我们看看它的贡献：

∫
U

2∇c(n
a∇an

c) = 2∫
U̇

(na∇an
c)~nc = 2∫

U̇

(~na∇a
~nc)~nc = ∫

U̇

~na∇a(~nc~nc) = 0
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2
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N
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2√h
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N
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(2πabπcdhacδhbd − ππabδhab)
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2√h
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δH3 = 2πabδ(DaNb)

= 2πabδ(∂aNb −
~
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abNc)

= −2πab(δ
~
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ab)Nc

= −πabN d(2Daδhbd − Ddδhab)

= 2√hDa(
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√h
πabN d)δhbd − √hDd(

1
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πabN d)δhab
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所以这一项的贡献为 0。若 Σt 紧致，则 Σt 没有边界，因此刚才略去的

∫Σt
√hDa(

1

√h
Nbπ

ab) 这一项直接为 0。所以这个时候就算我们略去了三项，但是对

于结果没有任何影响。
下面考虑 Σt 非紧致但是渐进平直的情况。这种情况下，我们直接考虑如何修改 H 的
表达式可以使得 ḣab, π̇ab 能够导出前面忽略了大量边界项时给出的演化方程（可以验证
这些演化方程和我们之前讨论 GR 的拉氏形式时给出的演化方程是一致的，所以它们
等价于真空 Einstein 场方程 Gab = 0。）利用渐进平直条件，在 Σt 上选渐进笛卡尔系
{xi}，r 代表“距离”，选择合适的 ta 使得 r → ∞ 时 Na → 0,N − N̂ → 0，且各个分量
趋于 0 的速度满足 N i ∼ r−1,N − N̂ ∼ r−1，则可以发现将略去的各个边界项表示为面
积分之后，只有一项不会消失，我们举个例子：之前略去了 √hDb((DaN)δhab)，考虑
它的面积分：

∫
S

~e√hDb((DaN)δhab) = ∫
S

r̂b((DaN)δhab) → 0

这个能为 0 的原因是 DaN  足够快地趋于 0。唯一不为 0 的一项是 −√hDa(Nva)：

−∫
S

Nvar̂
a = −∫

S

Nr̂ahbc(Dc(δhab) − Da(δhbc))

在 r → ∞ 时，时移 N → N̂，hbc → δbc，Dc → ∂c，以 −δC 代表上式在 r → ∞ 处的
极限，则：

δC = N̂ lim
r→∞

∑
i,j

∫ (∂(
δhij

δxj
) − ∂(

δδhjj

δxi
))r̂i = N̂δ( lim

r→∞
∑
i,j

∫
S

(
∂hij

∂xj
−

∂hjj

∂xi
)r̂i)

之前，我们的哈氏量的变分是 δH = ∫Σt
(Tabδπ

ab − S abδhab)，那么现在显然应该是：

δH = ∫
Σt

(Tabδπ
ab − S abδhab) − δC

所以对这个哈氏量求变分，我们就不会得到和原来一样的运动方程了，但是我们知道
我们原来给出的两个方程是与真空 Einstein 方程兼容的，所以我们其实必须修改我们
的哈氏量才能导出正确的方程（也就是说，我们之前的推导过程是“歪打正着”了），
我们应当把哈氏量改为：

H ′ = H + C = H + N̂ lim
r→∞

∑
i,j

∫
S

(
∂hij

∂xj
−

∂hjj

∂xi
)r̂i



所以，我们可以看到此时的哈氏量恰好等于渐进平直时空的 ADM 能量！


