
经典场论的哈氏理论
#General_Relativity

经典场论的哈氏理论需要 3+1 分解
在前文的讨论中，我们应当已经看出：拉氏理论是一个四维协变的理论，拉氏密度比
拉氏量更重要，我们显然无需在使用拉氏理论时对时空进行 3 + 1 分解。而哈氏理论
却不是这样，要使用哈氏理论，我们首先需要对时空进行分层（通常选择单参数类空
柯西面族 Σt 作为分层面），并且任意选择一个类时矢量场 ta，其积分曲线与各个 Σt

之交点被视为同一个空间点。为了定义积分，首先需要指定一个体元。一般来说，计
算 M 上函数的积分时通常使用与 gab 适配的体元 ϵabcd，而计算 Σt 上积分时通常使用
与 hab 适配的 ϵ(3) = na = ϵabcd 。然而有一个问题是我们的时空往往不是稳态时空，这
会导致 Ltaϵabcd ≠ 0 以及 Ltaϵ

(3)
abc ≠ 0。最典型的例子包括不断膨胀或收缩的宇宙度

规：

ϵabcd = a3(t)dt ∧ dx ∧ dy ∧ dz

由于空间张量场沿着 ta 的 Lie 导数可以被解释为时间导数（考虑选择 ta 的适配坐标系
并考察 Lie 导数依赖于坐标系的表达式），从而这意味着观者测得的三维体元随着时
间变化，这给讨论带来困难。因此我们仍然选择坐标体元：

e = dt ∧ dx1 ∧ dx2 ∧ dx3 taeabcd = dx1 ∧ dx2 ∧ dx3

显然有关系：ϵ = √−ge, ϵ(3) = √he(3)。

拉氏场论到哈氏场论

之前，如果我们有一个时空张量场 ψ，我们允许其拉氏密度有如下形式：

L = L (ψ, ∇ψ, ⋯ ,ψKψ)

首先进行 3+1 分解，此时我们只关心 ψ 场在每一个时刻的表现，记作 q(t)（它的具体
意义是时空张量场 ψ），我们仅允许 L  含有 q(t) 对时间的一阶导数和对空间的各阶导
数，换言之：

L = L (q, q̇,Dq, ⋯ ,DKq)

我们将下式定义为与 q 共轭的动量密度 π（注意：我们只是形式化地写出，没有给出
具体定义）：



π :=
∂L (q, q̇,Dq, ⋯ ,DKq)

∂q̇

若 q 是 (k, l) 张量，则按以上定义得到的 π 是 (l, k) 张量（严格来说，是空间张量密度
场）。特别地，若 qa 是对偶矢量场，则 πa 是矢量密度场。记 qi,πi 分别为 qa,πa 在共
动系的分量，那么有：

πi =
∂L

∂qi
,  i = 1, 2, 3

定义哈氏密度和时刻 t 的哈氏量：

H = πq̇ −L H = ∫
Σt

H e(3)

这里的 H  是标量密度场。现在的 H 依赖于两个空间场 (q,π)，我们需把有限维哈氏

理论推广至无穷维，这主要是把对有限元函数的偏导 ∂H

∂pi
,

∂H

∂q i
 推广至无穷维。先设

H 是有限维相空间 Γ 上的函数，q i(λ), pi(λ) 是 Γ 上的一条曲线，则将 H 的定义域限
制在曲线上有：

dH(λ)

dλ
|λ=0 = ∑

i

( ∂H

∂q i
dq i(λ)

dλ
+

∂H

∂pi

dpi(λ)

dλ
)|λ=0

在无限维的情形，q,π 可以看作是依赖参数 λ 的一族场，此时 H 的变分为：

δH =
dH(λ)

dλ
|λ=0 = ∫

Σt

e(3)(χqδq + χπδπ)

其中的泛函导数：

δH

δq
= χq

δH

δπ
= χπ

注意，这里我们并没有乘以一个 √h，因此积分号里面的东西应该已经是张量密度
场。δq 是张量场，从而 χq 是密度场；δπ 是密度场，从而 χπ 是张量场。
场论的哈氏理论也可以导出有约束、无约束两种情形。在无约束的情形下有：

q̇ = Lta =
δH

δπ
π̇ = Ltaπ = −

δH

δq

这个演化方程恰好是有限维哈氏方程向无穷维的推广。下面以闵氏时空中 KG 场作为
例子展示。选择场量 ϕ 在柯西面 Σt 上的值作为广义坐标 q(t)，其拉氏密度：



从而求出正则动量：

π(ϕ, ∂iϕ) =
∂L

∂ϕ̇
= ϕ̇

哈氏密度：

H (ϕ, ∂iϕ,π) = πϕ̇ −L = π2 +
1

2
(−π2 + ∂iϕ∂ iϕ + m2ϕ) =

1

2
(π2 + ∂iϕ∂ iϕ + m2ϕ2)

为了求出演化方程，需要求 H 的变分：

H[ϕ,π] =
1

2
∫

Σt

(π2 + ∂iϕ∂ iϕ + m2ϕ2)

从而读出：

ϕ̇ = π π̇ = ∂ i∂iϕ − m2ϕ

第二个式子就是 KG 方程。

有约束系统的哈氏场论

我们举出闵氏时空中的麦氏系统作为有约束系统的哈氏场论的例子。借惯性系 {t,xi}

做 3 + 1 分解，选择电磁 4-势为时空中的张量场。它应该有两个构型变量（作为柯西
面上的空间张量场）：电势 V  和磁矢势 ai。无源麦氏系统的拉氏密度为：

L = −
1

2
(∂aϕ∂ aϕ + m2ϕ2)

= −
1

2
(−ϕ̇2 + ∂iϕ∂ iϕ + m2ϕ2)

δH =
dH

dλ
|λ=0

= ∫
Σt

(πδπ + ∂iϕ∂ i(δϕ) + m2ϕδϕ)

= ∫
Σt

(πδπ + ∂ i(∂iϕ(δϕ)) − ∂ i∂iϕδϕ + m2ϕδϕ)

L = −
1

16
F μνFμν

= −
1

16
(2F 0iF0i + F ijFij)

=
1

16
(2(ȧi + ∂ iV )(ȧi + ∂iV ) − F ijFij)



注意这里保留 Fij 完全没问题，因为我们下面要计算正则动量，而 Fij 中不含 V  或 ai
对时间导数项。广义动量：

πV =
∂L

∂V̇
= 0 πj =

∂L

∂ȧj
=

1

4π
(ȧj + ∂ jV )

这里可以反解出 ȧj，然而 πV = 0 是一个初级约束。另一方面，计算电场：

Ej = −F0j = −(∂0Aj − ∂jA0) = −(ȧj + ∂jV )

可以看出 →E 正比于 →π。代入正则动量后得到：

L = 2ππiπi −
1

16π
FijF

ij ⇒ H = 2ππiπi +
1

16π
FijF

ij − πi∂iV

用一次高斯定理得到哈密顿量：

H[V , ai;πV ,πi] = ∫
Σt

(2ππiπi +
1

16π
FijF

ij + V ∂iπ
i)

从而有电磁场的运动方程，方程中需要引入一个未定拉氏乘子：

V̇ = λ π̇V = −
δH

δV
ȧi =

δH

δπi
π̇i = −

δH

δai

下面计算变分。设 ai,V ,πi,πV  均依赖于一个参数 μ，Fij 又依赖于 ai,V。计算变分
得：

写出哈氏方程，利用：

得到：

dH

dμ
|μ=0 = ∫

Σt

(4ππiδπ
i +

1

8π
F ijδFij + (∂iπ

i)δV + V ∂iδπ
i)

= ∫
Σt

(4ππiδπ
i +

1

2π
(a[iaj])∂iδaj + (∂iπ

i)δV + V ∂iδπ
i)

= ∫
Σt

(4ππiδπ
i +

1

2π
(∂i((∂ [iaj])δaj) − (∂i∂

[iaj]δaj)) + (∂iπ
i)δV + ∂i(V δπ

i) − (∂iV )

= ∫
Σt

((4ππi − ∂iV )δπi −
1

2π
(∂i∂

[i∂ j])δaj + (∂iπ
i)δV )

( →∇ × →B)i = [ →∇ × ( →∇ × a)]i

= ∂ i∂ja
j − ∂j∂

jai

= −2∂j∂
[jai]



δH

δV
= →∇ ⋅ →π

δH

δ→π
= 4π→π − →∇V

δH

δ→a
=

1

4π
→∇ × →B

利用前面看到的关系 4π→π = − →E 以及 B = →∇ × →a，可以把 →̇a, →̇π 的演化方程写为：

∂ →B

∂t
= − →∇ × →E

∂ →E

∂t
= →∇ × →B

次级约束：

→∇ ⋅ →π = 0 ⇒ →∇ ⋅ →E = 0

引入磁矢势时已经自动满足磁场无源。由于 →∇ ⋅ →π = 0 约束的存在，前面的哈氏量写
为：

H = ∫
Σt

(2ππiπi +
1

16π
FijF

ij) = ∫
Σt

1

8π
(E 2 + B2)

这正是电磁场的总能量。

对于有限自由度而言，约束是 Γ 中函数 ϕ(p, q) = 0。现在有无数个 p, q，因此约束应
当为 p(x, t), q(x, t) 的泛函（这里的 x 可以视作 p, q 原来的下标，约束应当是无限维的
Γ 上一点到 R 的映射）。然而，我们刚才给出的次级约束 ∇ ⋅ π = 0 却是 Γ 上一点到
Σt 上标量场的映射，我们可以把这个约束修改一下使之更符合我们对约束的理解。令
χ 为 Σt 上任意满足适当边界条件，且与 t 无关的标量场，令：

Cχ = ∫
Σt

→∇ ⋅ →π

这个 Cχ[V , a,πV ,π] 是符合我们理解的 Γ → R 的约束。显然，一个 ∇ ⋅ π = 0 可以制
造出无穷多这样的约束，对于这一点也可以这样理解：在 Σt 上点点都要求 ∇ ⋅ π = 0

，因此这本身就是无穷多个约束。下面可以检验我们做出的这个约束是否继续满足自
洽性条件，容易求出 Cχ 对四个场的变分里面仅有一项不为 0：

δCχ

δπi
= −∂iχ

从而：



因此自洽性条件得到满足，不再产生新的约束了。最后，我们可以证明初级约束和次
级约束都是第一类约束。考虑初级约束：

Cξ = ∫
Σt

ξπV ⇒
δCξ

δπV

= ξ

之前的拉氏泊松括号是对有限个 qi, pi 求导，现在应该改写为泛函导数，举个例子：

{Cξ,Cξ′} = ∫
Σt

(
δCξ

δV

δCξ′

δπV

−
δCξ

δπV

δCξ′

δV
+ ⋯) = 0

容易证明次级约束也和自己对易。最后，由于 H 对 V  的依赖是线性的，所以初级、
次级约束对易。为简单期间，可以选 λ = 0 使得 V  为常数。

选读：关于偏导数的定义

在拉氏经典场论中我们有 ∂L

∂ϕ
− ∂a

∂L

∂(∂aϕ)
= 0，在哈氏场论中也有 π =

∂L

∂q̇
。然

而，这里分母上的东西不是一个自变量，而是“自变张量场”。因此张量场对张量场的
偏导数的定义还需要澄清。
先考虑最简单的情形，设 ϕ 是闵氏时空标量场，则此时的拉氏密度：

L |p = L (ϕ|p, ∂aϕ|p)

在分量语言中，偏导数的定义是清晰的。因为 ∂aϕ 是对偶矢量场，给定一个坐标系后
自然可以拿到四个分量 ∂μϕ|p。此时 L (ϕ, ∂μϕ) 是五元函数，每个变量均可独立变化，
因此偏导数就是普通多元函数偏导数。然而在不依赖坐标的语言中我们不能这么做。

首先将偏导数 ∂L

∂(∂aϕ)
 定义为 R4 上矢量场，记作 Λa，而后要对每一 p ∈ R

4 确定 Λa

的值。L  可以视作有两个独立的槽位。我们引入一个标量场和一个对偶矢量场 α,βa

，且在 p 点引入一个单参族，以便我们使得 α,βa 发生变化以定义偏导数。单参族满
足三个条件：

Ċχ = −
1

2π
∫

Σt

(∂iχ)∂j∂
[jai]

= −
1

2π
∫

Σt

−χ∂(i∂j)∂
[jai]

= 0

α(0) = ϕ,βa(0) = ∂aϕ

α(λ) 与 λ 无关，只有 β(λ) 与 λ 有关。这样我们才能定义偏导数



在哈氏场论中会出现空间张量场对空间张量场的偏导数，而且，我们之前还没有下过

L  对一个自变场的偏导数的定义，例如 ∂L

∂q̇
，现在我们对这类偏导数下一个比较一般

的定义。考虑 Y  是 M 上任意空间张量场（例如哈氏密度），它依赖于 q 的时间导数 q̇
和对空间的各阶导数，可以写成：

Y |p = Y (q|p, q̇|p,Dq|p, ⋯DKq|p)

虽然这里面的自变量可以分为三类，但是我们要下的这个定义对于这三类自变量是平
权的，所以我们干脆记为：

Y = Y (X1, ⋯ ,XN)

仿照前面的定义，为了说明 Y  中的每个槽位可以独立地变，不妨在 p 点引入空间张量
场族 {α1(λ), ⋯ ,αN(λ)}，并且有要求：

对 ∀λ，α(λ),βa(λ) 均光滑，存在 δβα|p :=
dβa(λ)

dλ
|λ=0 和

δL =
dL (α(λ),βa(λ)

dλ
|λ=0

我们将满足如下定义的 Λa 称为 ∂L

∂(∂aϕ)
：

(δL )|p = (Λaδβa)|p

可以证明这个定义在分量式下恰好回到原有的定义。这个定义可以做三点推广：

闵氏时空推广为任意时空
L  可推广为任意 M 上有限多个张量场的函数，比如说对于弯曲时空电磁场有

L = −
1

4π
(∇[aAb])∇aAb，它是 Ab, ∇aA

b, gab 的函数

可以定义张量场对张量场的偏导数。按照以上定义推广，矢量对矢量的偏导数应当
是 (1, 1) 张量。

α1(0) = X1,αN(0) = XN

α1(λ)|p,αN(λ) 中只有 αn(λ)|p 与 λ 有关

α1, ⋯ ,αN(λ) 都对 λ 光滑，且 δY |p 和 (δXn)|p =
dαn(λ)

dλ
|λ=0

我们把满足这种条件的单参族（其中的每一个元素都是空间张量场）。与前文中的
定义类似：若 M 上存在空间张量场 Λ 使得对每一 Bp 类单参族有：

(δY )|p = (ΛδXn)|p



则 Λ 定义为 Y  对 X 的偏导数。
有一个问题是 Xn 是对称张量场的情形。考虑最简单的例子：Y = Y (Xab) 且有
X(ab) = Xab，那么根据定义有 δY = Λab(δX)ab，这会将 Λab 定义到差一个反对称
张量的程度，因此我们强制要求 Λab 是对称的；Xab 是反称时要求类似。


