
引力能量的非定域性
#General_Relativity

引力的能量是非定域的，因而“没有意义”。在讨论引力的能量之前，我们先从电磁场
的守恒律谈起。

电荷守恒律

从麦克斯韦方程出发，我们立刻可以推导出电荷守恒律：

∇[aFbc] = 0 ∇aFab = −4πJb

它可以被改写成外微分形式：

dF = 0 d⋆F = 4π⋆J

第二个方程两侧同时外微分，得到：

d⋆J = 0

可以证明，它的指标形式是：

(∇eJ
e)ϵabcd = 0 ⇒ (∇eJ

e) = 0

在闵氏时空中，这个式子的意义显然是电荷守恒。但是我们现在先要定义一下弯曲时
空中的电荷是什么。考虑四维弯曲时空中的一个类空曲面 Σ，我们定义其中的电荷
为：

Q(Σ) = ∫
Σ

⋆J

我们将 Σ 的单位法矢视作瞬时观者，对 J 做 3+1 分解：

J a = ρna + ja

⋆Jabc = J dϵdabc = ρndϵdabc + jdϵdabc = ρϵabc + jdϵdabc

其中，有三个指标的 ϵabc 是与 Σ 上诱导度规适配的体元。下面将 ⋆J 限制在 Σ 上，第
一项不变，而第二项为 0。取正交归一的 4-标架场：

(jdϵdabc)Σ(e1)a(e2)b(e3)c = (jdϵdabc)(e1)a(e2)b(e3)c = j0ϵ0123(e1)a(e2)b(e3)c

所以上面的积分化为：



Q(Σ) = ∫
Σ

ρϵabc

现在，我们来看看这样的对电荷的定义配合上 Maxwell Eq. 为什么可以得到电荷守
恒。对于闵氏时空的情形，上面的 ∇eJ

e = 0 中抽象指标换成具体指标可以直接导致
连续性方程。现在我们考虑在弯曲时空中使用一种纯几何的证明方法。

设图中 T  为所有带电粒子的世界线组成的世界"管"，先考虑最简单的情况：带电粒子
只存在于空间的有限范围内，也就是说 T  与 Ω 只交于 Σ1, Σ2，所以并没有任何电荷经
过 Δ。利用 Stokes 公式：

0 = ∫
Ω

d⋆J = ∫
Σ1

⋆J + ∫
Σ2

⋆J = −Q(Σ1) + Q(Σ2)

带电粒子从 Δ 上流出的情况也可类似讨论，可以证明电荷守恒。我们还可以把电荷的
定义写成这样：

Q(Σ) =
1

4π
∫

Σ

d⋆F =
1

4π
∫
S

⋆F =
1

4π
∫
S

ERCNCϵab =
1

4π
∮ E ⋅ NdS



其中 S 又是 Σ 的边界。所以上式是闵氏时空高斯定理到弯曲时空的推广。

下面举出一些例子：我们考虑一个三维球面 S 3 作为我们的 Σ，希望计算 Q(Σ)。在上
面取一个二维球面将 Σ 一分为二，两部分分别记作 Σ1, Σ2，则：

4πQ(Σ) = ∫
Σ1

d⋆F + ∫
Σ2

d⋆F = ∮
S

⋆F − ∮
S

⋆F

所以封闭宇宙的总电荷必为 0。

有一个可以谈的问题是磁单极子。众所周知，如果有磁荷存在，那么麦克斯韦方程应
该被改写成：

∇ ⋅ B = 4πρ̂,  ∇ × E = −4πĵ −
∂B

∂t

或者我们改写微分形式表述的麦氏方程：

d ⋆F = 4π ⋆J dF = 4π ⋆Ĵ

我们引入一种被称作“对偶变换”的操作，它将 (F , ⋆F) 变成 (F ′, ⋆F ′)，其实是一种
U(1) 对称性的变换，对于无源电磁场：

F ′ = F cosα + ⋆F sinα,   ⋆F ′ = −F sinα + ⋆F cosα

这样的变换有性质：它将某一时空中的无源电磁场变成同一时空中的无源电磁场，此
外，T ′

ab = Tab。所以你几乎可以将对偶变换前后的电磁场视作同一个电磁场。对于一
个静态观者，假设变换前的电磁场是：E = E0,B = B0，那么变换后的电磁场是：

E ′ = E cosα − B sinα,  B′ = E ′ sinα + B cosα

所以假如原来磁场是 0，做一个 U(1) 变换会得到磁场。在有源的情况下，我们也应当
对源做变换：(J, Ĵ) → (J ′, Ĵ ′):

J = J cosα − Ĵ sinα Ĵ ′ = J sinα + Ĵ cosα

考虑带电粒子受到的洛伦兹力，现在我们应该补上“磁荷”受到的一部分：

f = q(E + u × B) + q(B − u × E)

它对应的四维形式是：

F a = qF a
b U

b − q̂ ⋆F a
b U

b



不难验证，在对偶变换下，粒子受到的洛伦兹力也是形式不变的。换言之，我们可以
认为对偶变换前、后描述的是同一套电磁场。

所以，其实有磁荷不要紧，我们只需要做一个适当的 U(1) 变换：tanα = −
ρ̂

ρ
 立刻能

把有磁荷的情形变成没磁荷的情形。这个变换实质的要求是世界上所有的粒子的磁荷/
电荷的值都相等，而磁单极子（只有磁荷没有电荷）违背了这一点。

类比电荷的定义，磁荷可以定义为：

Q̂(Σ) = ∫
Σ

⋆J =
1

4π
∫

Σ

dF =
1

4π
∫

∂Σ

F

闵氏时空中的守恒量

前面我们讨论电荷守恒是借助 d ⋆J = 0，在闵氏时空中，有与 Ja 相似的 1-形式。考
虑 Killing 场 ξa，物质场的能动张量是 Tab，定义：

La = −Tabξ
b

下面证明 d ⋆L = 0。首先不难证明 d ⋆L = (∂ eLe)ϵ，考虑：

∂ aLa = −Tab∂
aξb = 0

其中利用了 Tab 是对称的和 ∂ aξb 是反对称的。考虑 Σ 是闵氏时空的柯西面，定义：

Pξ = ∫
Σ

⋆L

上面积分号里的部分应当理解为 ⋆L 在 Σ 面上的限制，那么我们先将 L 做 3+1 分解
有：

hd
eL

e = (δde + ndne)L
e = Ld + (neL

e)nd

代入后得到：

⋆Labc = Ldϵdabc = −(neLe)ϵabc + (hd
eL

e)ϵdabc

由于 hd
eL

e 的空间性，第二项显然为 0。而

−naLa = Tabn
aξb

从而：

Pξ = ∫
Σ

Tabn
aξb



下面我们讨论 ξb 选择不同的 Killing Field 的效果。若选择时间平移的 Killing Field，同
时我们选择一个惯性坐标系：

Pξ = ∫
Σ

Tabn
a( ∂

∂t
)

b

= ∫
Σ

Tab(
∂

∂t
)

a

( ∂

∂t
)

b

= ∫ ρdx3

所以这个守恒量是物质的总能量。同理，选择空间平移的 Killing Field，有：

Pξ = −∫
Σ

wid
3x

选择转动 Killing Fields，有：

Tab(
∂

∂t
)

a

ξb = x2w1 − x1w2

所以它们给出角动量守恒。最后考虑 Boost，取 ξa = t(
∂

∂xi
)

b

+ xi(
∂

∂t
)

b

，那么：

Tabn
aξb = tTab(

∂

∂t
)

a

(
∂

∂xi
)

b

+ xiTab(
∂

∂t
)

a

(
∂

∂t
)

b

= −twi + ρxi

所以它积分之后对应的是质心运动定理：与外界没有交互的场，其质心匀速直线运
动。

下面我们考虑任意柯西面 Σ′：

则：

∫
Σ

Tabn
aξb = ∫

Σ′

Tabn
′aξb



这个东西的正确性可以用高斯定理来理解。Σ, Σ′ 是时空的两个边界，因此 d ⋆L = 0 直
接导致 ∫Σ

⋆L + ∫Σ′
⋆L = 0。右边的这个东西解释为柯西面 Σ′ 的能量。一个特例是 Σ′

取为另一个惯性系的同时面的情形，此时我们有：

∫
Σ

Tab(
∂

∂t
)

a

( ∂

∂t
)

b

= ∫
Σ′

Tab(
∂

∂t′
)

a

( ∂

∂t
)

b

以及：

∫
Σ

Tab(
∂

∂t
)

a

( ∂

∂t′
)

b

= ∫
Σ′

Tab(
∂

∂t′
)

a

( ∂

∂t′
)

b

但是上面这是借助两个不同的 Killing 矢量场定义出的两个不同的能量，它们互不相
等。
以 T  代表闵氏时空 Killing 矢量场的集合，∫Σ Tabn

a(⋅) 是从 T  到 R 的线性映射，从而
它是 T  上的对偶矢量。我们记 P : T → R ，称为该物质场的 4-动量，给它加抽象指
标 PA。上面的这两个积分还可以这样理解：我在 T  中选择了两组不同的基矢：

E = PA(
∂

∂t
)

A

,E ′ = PA(
∂

∂t′
)

A

，所以显然这样定义出的能量是 Killing 场依赖的。

上面两个式子左右相等反映了能量的守恒性，而它们本身不相等反映了能量是观
者/Killing 场依赖的。

上面这种能量的定义方式依赖于 Killing 场的存在性，但是弯曲时空中很可能不存在
Killing 场。在流形上，我们说一个性质是“局域成立”的，意味着对于 M 上任意一点 p
，该性质在 p 的一个邻域中成立（而不是在一个子流形上成立）。我们说引力场能量
是无法局域化的，这意味着引力场的能量密度不能像电磁场一样被 Tab|p 这种局域几何
量表出。对于渐进平直时空，我们可以定义某一时刻全空间的总能量、总 3-动量。在
历史上，人们试图寻找引力的能动张量 tμν，但是人们找到的往往都是赝张量（分量在
坐标变换中并不按照张量的坐标变换律变化的张量），人们可以找到不同的赝张量，
但是它们对全空间积分的结果竟然相同。这启示我们找到全空间的引力场的能动量。
从另一个角度来说，广相的牛顿极限给出：

ϕ = −
1

2
(1 + g00)

因此，可以猜测引力场能量密度的最佳候选者与度规的一阶导数有关，而由度规分量
的一阶导数无法组成非坐标依赖的张量。这进一步验证了引力场能量无法被局域化。

渐进平直时空的总能量、总动量



Korma 质量

通过推广牛顿引力论中质量的概念，可以给出渐近平直稳态时空中的总能量。在牛顿
力学中，利用高斯定理，立刻可以得到全空间的总质量：

M =
1

4π
∫ (∇ϕ) ⋅ NdS

显然，在物质存在的区域外，牛顿引力势能满足 ∇2ϕ = 0，因此上面的积分与曲面的
选择无关。它向广义相对论推广的结果是：

M = −
1

8π
∫ ϵabcd∇cξd(⋆)

这个结果必须在渐进平直的稳态时空中进行，ξa 是在无穷远处被归一化满足
ξaξa = −1 的 Killing 场。下面我们看一下这个推广是如何完成的。

前面的 −∇ϕ = aa 是自由落体观者相对于静态观者的 3-加速，它与 Gs 的 4-加速 Aa

的关系是：

aa = −Aa − 2ϵabcω
buc + 2(Abu

b)ua

但是 G 在 p 点的 3-速度为 0，从而 aa = −Aa（你也可以从 GS 的 3-加速和 4-速的垂
直性质知道这一点）。我们先尝试在无穷远处推广牛顿力学中的质量表达式，因为在

无穷远处时空几乎是平直的，从而对于静态观者而言 U a = ξa = (
∂

∂t
)

a

：



现在我们想要收缩积分面，将其收缩到包含了所有质量的任意的 S，使得这个积分与
S 的选择无关。可以证明以下结果是合理的：

M =
1

4π
∫
S

ϵabχ
−1Ndξ

c∇cξ
d(⋆⋆)

我们先说明它和我们上面给出的形式是等价的。令 ωab = ϵabcd∇cξd，它在 S 上的限制
满足 ~ωab = Kϵab。等号两侧缩并 ϵab。

ϵab = N cϵcab = U fN eϵfeab

缩并后（因为 ϵab 已经被限制在 S 上，所以它作用到 ωab 中不在 S 上的部分的时候必
定得到 0，因此我们可以移除 ω 上的限制符号）：

ϵabϵab = NeUfϵ
feabϵabcd∇cξd = −4NeUfδ

f

[cδ
e
d]∇

cξd = 2K

得到：

K = −2NdUc∇
cξd

这样就证明了 ⋆ 和 ⋆⋆ 的等价性。下面我们要检查是否 ⋆ 式的积分结果与 S 的选取无
关，也就是说希望证明：

∫
S ′

ωab − ∫
S

ωab = ∫
σ

dω

(dω)eab = 3∇[eωab] = 3ϵcd[ab∇e]∇
cξd

两边缩并 ϵfeab 得到一个矢量：

dω = −2ϵegcd∇f∇fξe = 2ϵegcdR
e
aξ

a = 0

所以这就完成了证明。

这个东西只能在稳态时空中使用，是因为我们在推广的时候试图类比牛顿引力论中的
∇ϕ ，也就是经典力学中一个自由下落观者的加速度，那么谁能类比它呢？只有静态

M =
1

4π
∫
S∞

N dAdϵab

=
1

4π
∫
S∞

ϵabNdU
c∇cU

d

=
1

4π
∫
S∞

ϵabNdξ
c∇cξ

d



观者的 4-加速 Aa。对于 RN 时空这种 Tab → 0 的情形，也可以通过在无穷远处进行积
分来得到 Korma 质量。

ADM４－动量

在非静态时空中，我们无法使用 Korma 质量，于是引入如下的 ADM 能量：

E =
1

16π
lim
r→∞

∫
S

(∂jhij − ∂ihjj)N
idS

其中 S 仍然是一个类空柯西面上的拓扑球面。上面都使用了分量式，这些分量都是在
渐近笛卡尔系中的分量，r = √x2 + y2 + z2。我们来举个例子，取施瓦西时空的一个
等 t 面，诱导线元：

(ds)2 ≈ (1 +
2M

r
)((dr)2 + r2((dθ)2 + sin2 θ(dϕ)2) = (1 +

2M

r
)(dx2 + dy2 + dz2)

所以对于施瓦西时空，有 E = M。在稳态时空中，若你选择了与 ξa 正交的超曲面，
则 ADM 能量回到 Korma 质量。对于上式，我们可以使用坐标语言的高斯定理加以改
写，化成体积分：

E =
1

16π
∫

Σ

(∂i∂jhij − ∂i∂ihij)d3x

但是里面这个东西是坐标依赖的，没有协变性。所以它并不是能量密度。下面我们对
ADM 动量的表述进行改造，使用几何语言表述之。首先介绍结论：几何上，ADM 4-
动量是一个矢量，正如一个观者的 4-动量是一个矢量 P a ∈ Vp，ADM 4-动量是 Vi0  的
元素（即类空无限远点切空间中的矢量）。记 Pa = ~gabP a，n̂a 为 Σ 在 i0 处指向未来
的单位法矢，从而 P a = En̂a + pa。对于一个时空，P a 是确定的，这说明 4-动量守
恒。

接下来我们要研究张量趋于 i0 的性质，我们只考虑那些被称为"有正规方向依赖极
限"的张量场。作为一个引导，我们首先介绍电磁场的渐进表现。我们至少要求：

Fab(η) = lim
→i0

ΩFab

这个依赖于方向（切矢） η 的极限存在。有了这些依赖于方向 （也就是曲线在 i0 处的
切矢）的极限，我们可以利用之前所说的正规线给 Vi0  中子集 K 的每一点携带一个张
量，我们将其记为 F̄ab，注意 F̄ab 不一定切于 K。模仿标准情况下对电磁场的定义，
我们可以定义：

Ēa = η̄bF̄ab, B̄a = η̄b
⋆F̄ab



不难验证 Ēa, B̄a 都是“切于” K 的对偶矢量。可以证明，如果我们有以上定义，那么我
们可以完全使用 Ēa, B̄a 来表出 F̄ab：

F̄ab = −2η̄[aĒb] + ϵabcdη̄
cB̄d

我们知道，时空中的无源电磁场满足：

∇aFab = 0, ∇[aFbc] = 0

现在我们希望看看在 i0 处的表现，我们需要使用与 ~gab 适配的导数算符。通过前面共
形变换的结论，我们可以立刻得到：

~
∇aFab = 0,

~
∇[aFbc] = 0

利用这两个式子，可以推出：

DaĒa = 0,D[aB̄b] = 0 DaB̄a = 0,D[aĒb] = 0

其中 D 是与 Vi0  中的度规 ηab 在 K 上诱导出的 h̄ab 适配的导数算符。在时空中，我们
这样定义电荷：

Q(Σ) =
1

4π
∫

Σ

ρϵabc =
1

4π
∫ E cNcϵab

现在我们类比定义：从时空中沿着正规线向外走，走向类空方向，这样从每一点处出
发的正规线都可以视作走到了 K 上的一个截面，现在定义全时空的电荷：

Q(Σ) =
1

4π
∫
C

Ēaϵabc

下面我们要验证电荷的守恒性。记 βbc = Ēaϵabc，取两个截面 C,C ′，我们要证明：

∫
C ′

β − ∫
C

β = ∫
σ

dβ = 0

由 DaĒ
a = 0 不难直接得到 dβ = 0，从而上式得证。对于磁荷也是类似的：

Q̂(Σ) =
1

4π
∫ B̄aϵabc

下面考虑引力场。根据爱因斯坦场方程，在无穷远处 Rab = 0，黎曼张量只剩下无迹部
分，也就是 Weyl 张量 Cabc

d。与 Fab 的行为类似，Ω
1
2 C 在 i0 处有方向依赖的极限，

从而 Ω 1
2 C 在 K 上诱导出张量场 C̄。然而，C̄abcd 是不“切于” K 的，因此我们也需要

做些改造。令：



Ēab = η̄cη̄dC̄acbd, B̄ab = η̄cη̄dϵacefC̄bd
ef

可以验证它们都是切于 K 的。利用 Weyl 张量的性质可知 Ēab, B̄ab 都是对称的，由于
Weyl 张量的无迹性质可知 Ē, B̄ 都是无迹的（注意：gab 在无穷远处非常接近 ηab，而
~gab 只是乘了一个共形变换系数。而我们在 Vi0  处定义了闵氏度规，使用它缩并 Ē, B̄

自然也能得到无迹的结果）。类似于前面推出的电磁场满足的方程，我们可以证明这
里的 Ē, B̄ 满足的方程
首先，我们说明 ADM 4-动量是 T ⋆

SPI
 中的元素，定义：对于 uA ∈ TSPI：

PAu
A = ∫ ϵ̄acdĒ

abDbf̄(ω)

注意：一个 uA 是用 f(ω) 诱导出的，f(ω) 投影后就得到 f̄(ω)。记积分号里面的东西
为 βcd，我们仍然要证明的是 ∫

Σ
dβcd = 0，我们需要做一点准备：

Dbf̄(ω) = Db(ω̄aη̄
a)

我们要找找 D 和 ∂ 的关系，在 K 上任取 μ̄a，显然 ∂bμ̄a 没意义，但是 h̄b
c∂cμ̄a 有意

义，这相当于对导数算符做了个“投影”，然而这个结果不一定切于 K，可以证明以下
结果一定是切于 K 的：h̄a

dh̄b
c∂cμ̄d（这个结果就是把 μ̄d 先延拓到整个流形上，而后

将其协变导数向着子流形投影）。可以证明这个结果是 Daμ̄b（这相当于我们构造了
K 上的协变导数算符，只需验证 Dah̄bc = 0。）从而：

Dbf̄(ω) = Db(ω̄aη̄
a) = h̄b

c∂c(ω̄aη̄
a) = h̄b

cω̄a∂cη̄
a = h̄b

cω̄aδc
a = h̄b

aω̄a

为了计算 dβ，下面计算：

最后，在定义电荷的时候，我们推出的“渐近电磁场”满足四个方程（均无散、无
旋），现在我们要对 Ē, B̄ 推出类似的方程。无穷远处，Weyl 张量满足恒等式：

∇[aCbc]d
e = 0 ⇒ D[aĒb]c = 0,D[aB̄b]c = 0

利用 h̄ac 与 D[aĒb]c = 0 缩并，就得到 DcĒcb = 0，所以看似我们写出了两个方程，其
实我们已经有了四个方程。下面证明 dβ = 0：

DaDbf̄(ω) = Da(h̄b
cω̄c)

= h̄b
eh̄a

d∂d(h̄e
cω̄c)

= h̄b
eh̄a

d∂d(ω̄e − η̄eη̄
cω̄c)

= −ω̄ch̄beh̄a
dη̄c∂dη

e

= −f̄(ω)h̄ab



考虑：

从而我们完成了证明：PAu
A 确实是一个不依赖于积分线 C 的守恒量。注意：这个证

明并不是说 PA 是一个常矢量场，而是说你把 PA 作用在对应于四个平移 Killing 场无
限小超平移上提取出来的能量和动量是不依赖于柯西面 Σ 的，也就是说整个时空的能
动量是不变的。
下面，我们要说明 PA 同样也是 V ⋆

i0  上的元素。取 ω ∈ Vi0，使得：

ωa = ωμeμ = ωμ( ∂

∂xμ
)，∂bω

μ = 0。考虑：

显然这里的 ω̄a 和之前我们在构造 TSPI  时使用的 ω̄a 是一一对应的，所以我们说 PA

其实也可以被作用在 Vi0  的元素上。

之前我们介绍过，对于闵氏时空有 P/T = L；对于 SPI 或者 BMS 代数有 G/S = L

，这是不是意味着我们要通过 G/S  定义角动量呢？注意：要判断 P 中的一个元素是
否属于 T  中，这个问题是泾渭分明的；但是要从 P 中挑出 L  的方式则是有无穷多
种：

L = {ξa ∈ P|ξa|p = 0}

所以角动量这个东西是“原点依赖”的。而且，与闵氏时空中的 T  对应的是 S，T  是
四维的，所以角动量是依赖于 4 个参数，但是 S  却是无限维的，如果我们硬要去模仿
定义，那么我们将会得到无限维的角动量！于是，在定义角动量的时候我们需要对超
平移做些限制，以使得 SPI 的维数被减小到 10 维。这里需要附加的限制大概是由
Weyl 张量定义的 Bab 的衰减需要比 Eab 快一个数量级。

Bondi 4-动量

(dβ)ecd = 3ϵ̄a[cdDe]Ē
abDbf̄(ω)

3ϵ̄ecdϵ̄a[cdDe]Ē
abDbf̄(ω) = −6δeaDeĒ

abDbf̄(ω)

= −6ĒabDa(Dbf̄(ω))

= −6Ēabh̄abf̄(ω)

= 0

PAu
A = ∫

C

ϵ̄acdĒ
abDbf̄(ω)

= ∫
C

ϵ̄acdĒ
abh̄b

eω̄e

= ∫
c

ϵ̄acdĒ
a
eω̄

e



现在我们要考虑被引力波带走的能量。由于 ADM 4-动量守恒，所以我们不可以使用
上面定义的 PA 来讨论引力波带走的能量。那么我们也应该取一个无穷远来研究，但
是我们需要取一个引力波永远追不上的面！由于引力波以光速传播，所以自然想到我
们应当研究类光超曲面，或者至少是渐进类光的超曲面。

由于每一个类光超曲面都在 I + 上形成一个截面，因此我们可以使用图中沿着锥面的



母线逐渐增加的 u 来标记一个类光超曲面。有人使用坐标语言定义了类光超曲面的能
量 E(u)，可以证明，随着 u 逐渐增大，E(u) 是逐渐减少的。

我们回顾一下前面的 Korma 质量，我们是在稳态时空中通过类比牛顿力学中对质量的
定义获得 Korma 质量的：

M =
1

4π
∫
S∞

NdA
dϵab = −

1

8π
∫
S∞

ϵabcd∇cξd

这个东西依赖于 Killing 场 ξa，因而只能研究稳态时空的质量。现在我们要研究渐进平
直时空的总质量，应当把 ξd 处换成渐进平直时空中的渐进对称性。渐进平直时空中的
对称性有两种，前面，我们已经利用类空无限远点处与闵氏时空中四个平移 Killing 矢
量场同构的无限小超平移 TSPI  构造了 ADM 4-动量，但是类光无限远处的对称性我们
还没有用。所以我们同样考虑类光无限远上与平移 Killing 场同构的 Lie 代数 TBMS。
我们先考虑把 Korma 质量做个迁移，所以我们显然希望使用时间平移对称性。设
ξ̂a ∈ TBMS 是 I + 上的无穷小时间平移对称性，而 ξa 则是 (M, gab) 上与 ξ̂a 对应的渐
进对称性，于是我们将积分中对应于稳态观者的 Killing 场改成渐进对称性。因为现在
ξa 毕竟不是 Killing 场，所以积分的结果必然与 S 的选取有关，但是我们期望随着 ξa

越来越接近 Killing 场，积分对截面 S 的依赖必然越来越弱，因此我们希望这个积分在
无穷远处有不依赖于 S 的极限。设 C 是 I + 上的拓扑 2-球面，可以证明以下极限存
在：

E := − lim
Sα→C

1

8π
∫
Sα

ϵabcd∇cξd

但是，一个困难是：不同的 ξa 光滑延拓到 I + 上时可对应同一个 ξ̂a，但是不同的 ξa

代入上式计算对应的结果却不同。满足以下条件的 ξa 代入后求得的 E 相同：

lim
→I +

Ω−1∇aξ
a = 0

你可以直观地看出这个条件是不希望 ∇aξ
a 差太远，或者说，对于等价的 ξa 而言，

∇aξ
a 衰减的速度至少要比 Ω 快。对于稳态时空而言，这个条件是自动满足的，这是

因为：

∇aξ
a = gab∇

bξa = gab∇
[bξa] = 0

所以，我们发现上面对 E 的重定义是一个将 TBMS 中时间平移元素映射到实数的线性
映射，我们自然可将其推广为 T ⋆

BMS 上的一个元素 PA。之前，我们研究的 ADM 4-动
量与 i0 上的截面有关，无论你选择了 i0 吹胀后的“旋转双曲面”上的哪个截面做积分，
得到的 ADM-4 动量都是相同的。但是，我们研究 Bondi 动量的一个目的就是想看引



力波带走了多少能量，所以我们会研究永远不会“截获”引力波的超曲面，也就是类光
或者渐进类光超曲面。不同的渐进类光超曲面和 I + 有不同的交线 C，因此 PA 与截
面 C 的选择有关，记作 PA(C)。
对 ADM 4-动量的定义涉及两个特殊矢量，一个是 ξa，一个是 ηa。有了对称性才有守
恒量，因此 ξa 是定义中必要的，而 ηa 则用于标识我们研究的是哪个类空超曲面。
ADM 4-动量可以做 3+1 分解，由于它既是 T ⋆

SPI  中的元素，又是 V ⋆
i0  中的元素，因此

对它的 3 + 1 分解可借类空超曲面在 i0 处的法矢进行，Pan
a 即为分解出的能量部分

（注意：前面我们其实已经证明了 TSPI  和 Vi0  有一个同构，所以这里利用 na 对 Pa

做 3+1 分解也可以被视为使用 TSPI  中对应时间平移的 ξa 进行分解）。这可以理解
为：当我指定了类空超曲面 Σ，我相当于找到了一组特殊的观者：他们的世界线处处
与 Σ 垂直。这些观者在无穷远处的四速度就是法矢 na，所以我们可以说这样分解出来
的 ADM 能量是这组特殊观者观测到的时空总能量（或者说：由时间平移对称性生成
的守恒量就是总能量）。而对于 Bondi 动量我们不能这么说，因为类光超曲面在无穷
远处的法矢是类光的，并且法矢在无穷远处的极限并非躺在 I  上的 ξ̂a。所以我们在定
义 Bondi 能量时也要指定两个东西：一个是无穷小平移对称性 ξa，有个是截面 C。取
定 ξ̂a ∈ TBMS，并设两个超曲面 N1,N2 对应的截面是 C1,C2（“推迟时间” u2 > u1

），那么必有

E
ξ̂
(C1) − E

ξ̂
(C2) = ∫

V

f

其中 V  是 I + 上介于 C1,C2 之间的三维开域，f 是恒正的函数。这确保了引力波带走
的能量一定为正。最后，可以证明 TBMS 和 Vi0  有一个同构，设 ξ̂a 和 n̂a 可以通过这
个同构联系起来，设 V1 是 I + 上介于截面 C1 与 i0 间的三维开域，那么有：

E
ξ̂
(C1) − En̂ = −∫

V1

f

这进一步验证了我们的想法：Bondi 动量确实去除了那些被引力波带走，从而世界线
再也“追不上”类光曲面的能量。换言之，如果我们能将 C1 逐渐趋近于 i0，则 Bondi 能
量会逐渐趋近于 ADM 能量。

正能定理

在牛顿引力论中，引力系统的总能量必定为负。然而，按照广义相对论的结果，若体
系有负的能量，则系统内的物体间将相互排斥，而且这似乎意味着系统的能量没有下
界，人们可以从其中无穷无尽地获取能量，所以这使得人们猜测广义相对论中孤立体



系的能量必定为正。在满足某些条件时（时空没有奇性；主能量条件，大致可以说是
所有观者观测到的物质场的能量都非负）时，这一定理成立（正能定理）。


